Авария низкого давления в промышленном чиллере
Авария низкого давления в промышленном чиллере
Ниже будут перечислены основные причины появления аварии низкого давления в чиллере и пути к их устранению. Описанные ситуации относятся к случаям, случившемся на исправно работающем охладителе до возникновения данной аварии. Если авария возникла спустя небольшое время работы, то может иметь место заводской брак или неправильная настройка оборудования, обратитесь к производителю чиллера за консультацией и гарантийным ремонтом.
Загрязнённый фильтр промышленного чиллера
Причина: авария низкого давления по причине засорённого фильтра грубой очистки на входе охлаждаемой жидкости в испаритель. При наличии механический грязи любого рода в хладоносителе, при отсутствии системы фильтрации и дополнительного фильтра на входе в чиллер, вся грязь скапливается как раз в фильтре перед испарителем. Из-за чего проток через испаритель снижается, вследствие чего давление кипения фреона снижается, снизившись до аварийной отметки чиллер останавливается по аварии низкого давления.
Устранение: Чистка фильтра перед испарителем, установка на входе в промышленный чиллер дополнительного фильтра — «грязевика» для предотвращения попадания механической грязи в теплообменник чиллера. Установленный внутри чиллера фильтр является крайней степенью защиты теплообменника чиллера, от случайно попавших в насос частичек грязи, но не системой фильтрации как таковой. Его регулярная чистка внутри чиллера не вполне удобна и безопасна, так как в узком пространстве внутри рамы есть риск что-либо повредить внутри чиллера, например, капиллярные трубки. Проще и безопасней чистить внешний фильтр. Если охлаждается проточная вода с вероятностью постоянного загрязнения (например, вода из водоёма) имеет смысл установить дополнительную систему фильтрации с несколькими ступенями очистки. После чистки следует сбросить аварию на реле низко давления, путем нажатия кнопки сброса аварии. Далее запуск. Рекомендуется осуществить чистку обоих фильтров через 30-60 минут после начала работы, для удаления возможных загрязнений, попавших после монтажа второго фильтра.
Снижение температуры окружающего воздуха
Причина: существуют моноблочные чиллеры для уличной эксплуатации и для эксплуатации в отапливаемом помещении. Уличные снабжены системой холодного запуска (зимний пакет), который обеспечивает штатный пуск охладителя, при отрицательных температурах окружающей среды. Если чиллер не снабжен зимним пакетом и заказывался на заводе, как чиллер для помещения, то при остановке чиллера (например, на ночь) и падении температуры в цеху ниже 0 °C , давление во фреоновом контуре также падает до аварийной отметки и фиксируется авария низкого давления.
Устранение: чиллер можно запустить путем сбрасывания аварии низкого давления вручную, следует отрыть реле, далее — отверткой, механически подпереть лапку реле в безаварийное положение и нажать кнопку сброса, далее запустить охладитель, когда давление поднимется до рабочего, вытащить отвертку. Также такое часто случается, при первом запуска, так как зимой чиллер может перевозиться в транспорте с отрицательной температурой. При работе с отверткой будьте осторожны, не втыкайте ее слишком глубоко в реле, так как на некоторых моделях можно повредить сильфон.
Для предотвращения дальнейших аварий установите чиллер туда где температура не снижается ниже +5 °C . В помещениях многие охлаждают воду и при снижении температуры ниже 0 °C это может привести к замерзанию воды в тонком межпластинчатом пространстве испарителя и разрыву платин, что повлечет очень дорогостоящий ремонт.
Выход из строя температурного датчика промышленного чиллера
Причина: механическое повреждение датчика или заводской брак. При этом, на экран контроллера не всегда выводится ошибка датчика, но контроллер будет показывать одну температуру, а в реальности у хладоносителя будет сосвем другая — хладоноситель может переохлаждаться, давление кипения фреона будет снижаться, чиллер зафиксирует аварию низкого давления.
Устранение: измерьте температуру на выходе из испарителя в любом удобном месте с помощью механического, ртутного, спиртового, электронного или при наличии бесконтактного термометра. Обычно, в трубах есть металлические гильзы для этих целей, если гильзы нет, то можно померить на металлической улитке насоса, приклеив в ней термочувствительный кончик измерительного прибора и накрыв неприлегающую термочасть теплоизоляцией на время измерений. Следует учесть погрешность в
1 градус. Если чиллер со встроенным гидромодулем, то измерьте температуру в баке. Температура по показанию термометра и показываемая на контроллере не должна отличатся более чем на 2 градуса. Если разница больше, следует заменить температурный датчик. После замены повторить измерения.
Утечка фреона из промышленного чиллера
Причина: механическое повреждение фреонового контура; микротрещина вальцованного соединения из-за вибрации; частично раскрученная гайка на вентилях, штуцерах или вальцованных соединениях по той же причине; микропора в паяном соединении; негативное химическое воздействие на медные трубки и др.
Устранение: постарайтесь с помощью фонарика визуально найти масляные подтеки на полу рамы чиллера и на других элементах. При более подробном осмотре найдите место откуда масло подтекает. Если на манометре осматриваемой области (высокого/низкого давления) присутствует избыточное давление и фреон ушел только частично, то нанесите пенный раствор на предполагаемое место повреждения для того чтобы удостовериться что что именно там негерметичность. Если давление на манометре нулевое, то закачайте в данную область через клапан Шредера фреон или азот и пропеньте. Если масляных пятен нет, то пропеньте весь фреоновый контур промышленного водоохладителя.
Разрыв испарителя промышленного чиллера
Причина: если визуальных повреждений нет, масляных подтеков тоже, но при этом давление на манометрах равно нулю. Вероятно, мог быть поврежден испаритель чиллера. На многих современных чиллерах малой и средней мощности установлены пластинчатые теплообменники ввиду их высокой эффективности и малых габаритов, но они требуют более внимательной эксплуатации. Причины их поломки различны: неисправное реле контроля протока воды через испаритель (
10% случаев), неисправный температурный датчик (
10% случаев), неисправное реле низкого давления фреона или его неграмотная перенастройка (
50% случаев) и др.
Устранение: выяснить выход из строя какого элемента автоматизации привел к разрыву испарителя. Снять испорченный теплообменник, заменить вышедший из строя элемент автоматизации. При данной аварии во фреоновый контур чиллера поедает вода. Далее следовать рекомендации по замене фреонового фильтра в промышленном чиллере, при попадании влаги во фреоновый контур. Там описано какие мероприятия должны быть приняты для осушения фреонового контура от влаги.
Климатическое и холодильное оборудование
Климатическое и холодильное оборудование — оборудование, основанное на работе холодильных машин, предназначенное для автоматического поддержания температуры и иных параметров воздуха (относительной влажности, чистоты, скорости движения воздуха) в закрытых помещениях или термоизолированных камерах [ источник не указан 3636 дней ] . Хотя холодильное и климатическое оборудование отличается по назначению и поддерживаемой температуре, такое оборудование имеет конструктивное сходство и единые принципы действия.
Климатическое оборудование поддерживает требуемые параметры для комфортного нахождения человека от небольших объёмов (например, салон автомобиля ) до огромных производственных, торговых и жилых площадей в десятки тысяч квадратных метров. Холодильное оборудование поддерживает требуемые параметры для продолжительного хранения продуктов питания и иных целей. Холодильные камеры имеют размер от сумки-холодильника до рефрижераторных судов и специальных помещений. Из-за различия в охлаждаемых объёмах климатическое оборудование с производительностью по холоду менее 500 Ватт серийно не производится, в то время как холодильное оборудование может иметь производительность по холоду менее 10 Вт.
Существует оборудование занимающее промежуточное положение между холодильным и климатическим — специальные кондиционеры для винных погребов. Они поддерживают температуру до +5 °С и имеют встроенную систему оттаивания внутреннего блока, как в холодильниках [ источник не указан 3555 дней ] .
Содержание
Типы оборудования по принципу действия [ править | править код ]
Принцип действия | Холодильное оборудование | Климатическое оборудование |
---|---|---|
Компрессионный | Холодильник, Рефрижератор | Кондиционер, Система кондиционирования, Осушитель воздуха |
Абсорбционный | Холодильник Эйнштейна, Icy ball | Абсорбционный чиллер |
Термоэлектрический | Сумка-холодильник, Кулер для воды, Небольшой автомобильный холодильник | Не применяется |
Парокомпрессионный холодильный цикл [ править | править код ]
Теоретической основой, на которой построен принцип работы холодильников, является второе начало термодинамики. Охлаждающий газ в холодильниках совершает так называемый обратный цикл Ренкина — разновидность обратного цикла Карно. При этом основная передача тепла основана не на сжатии или расширении цикла Карно, а на фазовых переходах — испарении и конденсации. Холодильное и климатическое оборудование компрессионного типа действия небольшой мощности имеет сходное устройство:
- компрессор, создающий необходимую разность давлений;
- испаритель, забирающий тепло из внутреннего объёма холодильника;
- конденсатор, отдающий тепло в окружающую среду;
- Дросселирующее устройство, поддерживающее разность давлений за счёт дросселирования хладагента;
- Хладагент — вещество, переносящее тепло от испарителя к конденсатору.
Компрессор засасывает из испарителя хладагент в виде пара, сжимает его (при этом температура хладагента повышается) и выталкивает в конденсатор. Для смазки компрессора применяют специальные рефрижераторные масла. Стоит отметить, что масло и хладагенты R-22, R-12 хорошо растворяются друг в друге. Более поздние хладагенты (R-407C, R-410A и т. д.) не растворяют масла и для смазки компрессора используют полиэфирные масла. Полиэфирные масла крайне гигроскопичны, вступают в химическую реакцию с водой и разлагаются.
В конденсаторе нагретый в результате сжатия хладагент остывает, отдавая тепло во внешнюю среду, и при этом конденсируется, то есть превращается в жидкость, поступающую в дросселирующее устройство.
Жидкий хладагент под давлением поступает через дросселирующее устройство (капилляр или терморегулируемый расширительный вентиль) в испаритель, где за счёт резкого уменьшения давления происходит испарение жидкости. При этом хладагент отнимает тепло у внутренних стенок испарителя, за счёт чего происходит охлаждение.
Таким образом, в конденсаторе хладагент под воздействием высокого давления конденсируется и переходит в жидкое состояние, выделяя тепло, а в испарителе под воздействием низкого давления вскипает и переходит в газообразное, поглощая тепло.
Терморегулируемый расширительный вентиль необходим для создания необходимой разности давлений между конденсатором и испарителем, при которой происходит цикл теплопередачи. Он позволяет правильно (наиболее полно) заполнять внутренний объём испарителя вскипевшим хладагентом. Пропускное сечение ТРВ изменяется по мере снижения тепловой нагрузки на испаритель, при понижении температуры в камере количество циркулирующего хладагента уменьшается.
В бытовых холодильниках и кондиционерах чаще всего вместо ТРВ используется капилляр. Он не меняет своё сечение, а дросселирует определённое количество хладагента, зависящее от давления на входе и выходе капилляра, его диаметра, длины и типа хладагента.
Большое значение имеет чистота хладагента: вода и примеси могут засорить капилляр или повредить компрессор. Примеси могут образовываться в результате коррозии внутренних стенок трубопроводов холодильника, а влага может попасть при заправке системы. Поэтому при заправке тщательно соблюдается герметичность, перед заправкой контур вакуумируется.
Обычно также присутствует теплообменник, выравнивающий температуру на выходе из конденсатора и из испарителя. В результате к дросселю поступает уже охлаждённый хладагент, который затем ещё сильнее охлаждается в испарителе, в то время как хладагент, поступивший из испарителя подогревается, прежде чем поступить в компрессор и конденсатор. Это позволяет увеличить производительность холодильной установки, а также предотвратить попадание жидкого хладагента в компрессор.
График парокомпрессионного холодильного цикла [ править | править код ]
Так как основная передача тепла основана не на цикле Карно, а на фазовых переходах — испарении и конденсации, график цикла в координатах P и V (диаграмма Эндрюса) не является информативным.
- В тепловом двигателе процессы происходят циклично, а холодильных установках — непрерывно, без разграничения циклов. Хотя кипение хладагента в испарителе приводит к многократному увеличению объёма рабочего тела, из-за непрерывной работы компрессора давление остается постоянным. Давление в конденсаторе также постоянно и определяется установившейся температурой. Если по каким-либо причинам давление в конденсаторе начнет меняться, то изменится физическое свойство газа — температура конденсации. Температура не меняется, значит давление постоянно. Таким образом, в парокомпрессионном холодильном цикле выделяют два постоянных давления: высокое и низкое.
- Парокомпрессионный холодильный цикл является обратным — механическая энергия используется для переноса тепловой. В отличие от теплового двигателя, необходимо оценить не полученную механическую энергию, а перенесенный объем тепла. между рабочим телом и окружающей средой происходит при установившихся по времени и постоянных по площади радиаторов температурах — кипения или конденсации.
- Объёма хладагента при конденсации и кипении изменяется в десятки раз из-за смены агрегатных состояний вещества. Для холодильного цикла на координатах P и V необходимо использовать логарифмическую шкалу.
Поэтому парокомпрессионный холодильный цикл удобно представить в координатах T и S (температура и энтропия). В основе работы холодильника лежит обратный цикл Ренкина.
- Линия, напоминающая параболу — диаграмма термодинамических свойств хладагента. Вершина этого купола — критическая точка, при которой конденсация жидкости невозможна.
- Линия сжатия 2-1. Сжатие газа компрессором. При сжатии повышаются давление и температура газа.
- Линия перегрева газа 1-6. Перегрев необходим, чтобы образование жидкой фазы происходило в конденсаторе, а не в компрессоре. Перегретый газ поступает в конденсатор.
- Линия конденсации 6-5. В конденсаторе газ превращается в жидкость. При конденсации отводится тепловая энергия.
- Линия дросселирования 5-4. Жидкий хладагент дросселируется в испаритель через терморегулирующий вентиль, работающий на основе эффекта Джоуля — Томсона.
- Линия уменьшения давления 4-3.
- Линия кипения 3-2. За счет низкого давления хладагент вскипает в испарителе, переходит в газообразное состояние, поглощая при этом тепловую энергию.
Площадь прямоугольника под отрезком 5-6 до оси S (интеграл функции по линии температуры испарителя 1-2) характеризует холодопроизводительность. Площадь всей фигуры 1-2-3-4-5-6 плюс интеграл по линии 4-5 характеризует затрачиваемую компрессором работу. [1]
Составляющие холодильной установки [ править | править код ]
Хладагент вещество, которое переносит тепло от испарителя к конденсатору. Для повышения КПД, климатическое и холодильное оборудование проектируют таким образом, чтобы температура хладагента в состоянии газа незначительно отличалась от температуры кипения. Отличие температуры газа на выходе из испарителя от температуры кипения называют перегревом. Аналогично, в зоне высокого давления отличие температуры жидкости на выходе из конденсатора от температуры конденсации называют переохлаждением. Значение перегрева и переохлаждения, как правило, должно находиться в интервале от 3 до 7°C. Для каждого хладагента существует шкала, устанавливающая однозначное соответствие между давлением и температурой кипения и конденсации хладагента. Температура кипения в холодильных системах значительно ниже (до −18 °С) чем в климатических системах (от +2 до +5 °С). Фреон климатического оборудования должен быть негорючим, так как при утечке хладагент мог бы спровоцировать объемный взрыв в помещении или в системе вентиляции. Соответственно, некоторые фреоны применяются только в холодильных системах (R600) или только в климатическом оборудовании (R410A), большая группа фреонов применяют как в холодильном, так и в климатическом оборудовании (R22).
Компрессор обеспечивает необходимую разность давлений между двумя частями системы: конденсатором (зона высокого давления) и испарителем (зона низкого давления). Если сравнивать холодильное и климатическое оборудование на одном типе хладагента, можно отметить сходные параметры зоны высокого давления, но на входе в компрессор давление фреона в холодильном оборудовании будет ниже, чем в климатическом.
Конденсатор передает тепло от хладагента в окружающее пространство. Хладагент охлаждается в конденсаторе и кондесируется в жидкость. Климатическое оборудование может передавать тепло как из охлаждаемого помещения при охлаждении, так внутрь помещения при обогреве. В качестве конденсатора может выступать как внутренний, так и внешний блок сплит-системы. Максимальная температура конденсатора ограничивается параметрами критической точки хладагента.
Терморегулирующий вентиль обеспечивает требуемое значение давления (а, значит, и температуры) в испарителе, дросселируя подачу жидкого фреона в зависимости от температуры на выходе испарителя. В оборудовании небольшой мощности (до 10 кВт), применяют капиллярную трубку.
Испаритель передает тепло из окружающего пространства хладагенту. Из-за низкого давления хладагент закипает в испарителе при низкой температуре. В холодильном оборудовании температура испарителя может быть ниже 0 °C, и он покрывается инеем, что ухудшает теплообмен. Это компенсируется увеличением площади теплообмена морозильных камер. Очистка от инея (оттаивание) осуществляется периодической процедурой «размораживания» (выключения). В No-Frost холодильниках может применяется «плачущий» испаритель, температура которого всегда выше 0 °С. В климатическом оборудовании для увеличения скорости охлаждения помещения через испаритель необходимо пропустить наибольшее количество воздуха. В сплит-системах для этого применяют тангенциальный вентилятор.
Система отвода конденсата воды В климатическом и холодильном оборудовании температура испарителя хотя и может быть выше 0 °С, но всё же она обычно ниже точки образования росы, и на нём образуется конденсат. Отвод воды от испарителя в зависимости от вида оборудования производится по-разному. В холодильниках с «плачущим» испарителем вода по желобу в задней части стенке попадает в специальную пластмассовую или металлическую чашу на компрессоре и испаряется. В сплит-системах вода по трубке под наклоном выводится на улицу. В промышленных системах кондиционирования при помощи системы дренажных помп вода централизованно отводится в канализацию.
Системы охлаждения холодильных камер
Для отвода тепла из охлаждаемых камер холодильника используют три различные системы: непосредственное рассольное и воздушное охлаждение. Нередко используют и комбинированное, т. е. смешанное охлаждение, при котором охлаждение камеры осуществляется одновременно двумя или тремя перечисленными методами.
Непосредственное охлаждение. В этой системе охлаждения жидкий хладагент из конденсатора, пройдя регулирующий вентиль, поступает непосредственно в испарительные батареи, расположенные в охлаждаемых помещениях. За счет тепла окружающего воздуха хладагент кипит и тем самым охлаждает его. Пары хладагента из батарей отсасываются компрессором.
В зависимости от того, каким образом подается жидкий хладагент в испарительные батареи, системы непосредственного охлаждения подразделяются на безнасосные и насосные.
В безнасосных системах жидкость поступает в батареи под действием разности давлений конденсации и кипения холодильного агента. В насосных она подается специальными насосами. Почти все аммиачные холодильные установки непосредственного охлаждения, применяемые на предприятиях торговли и общественного питания, являются безнасосными. Насосные системы используют на крупных холодильниках.
Различают насосные системы с нижней подачей хладагента и с верхней. При нижней подаче требуется больше хладагента для заполнения системы и хуже отводится масло из испарителей, чем при верхней подаче. Поэтому большее применение находят насосные системы с верхней подачей хладагента.
Чтобы производить оттаивание снеговой шубы в системах непосредственного охлаждения, предусматривают дренажный ресивер и трубопровод для подачи в оттаиваемые приборы горячих паров хладагента.
Батареи непосредственного охлаждения (или испарители) для аммиачных установок изготавливают из стальных труб диаметром 57×3,5 или 38×2,5 мм. Чаще рекомендуют трубы диаметром 38×2,5 мм. Хладоновые батареи делают из медных труб диаметром 18×1 мм.
Стальные трубы в стыках сваривают, а медные — сшивают Для увеличения теплопередающей поверхности батарей почти все они изготавливаются с оребрением. Аммиачные батареи иногда делают без оребрения, из гладких труб. Располагают батареи в камерах у стен или под потолком. Поэтому различают настенные и потолочные батареи.
Аммиачные настенные батареи рекомендуется делать однорядными, а потолочные — двухрядными. Хладоновые испарительные батареи, как настенные, так и потолочные, делают обычно двухрядными.
К преимуществам непосредственного охлаждения относятся:
•простота конструкции холодильной установки,
• интенсивное охлаждение камер, которое начинается сразу после пуска компрессора;
• возможность получения более высоких температур кипения по сравнению с другими способами охлаждения.
Поэтому в эксплуатации система непосредственного охлаждения более выгодна, особенно для камер с низкими температурами, для хранения замороженных продуктов.
К недостаткам системы непосредственного охлаждения относятся: опасность проникновения в охлаждаемые помещения холодильного агента, запах которого может передаваться продуктам, повышенная опасность в пожарном отношении при работе с горючими хладагентами, трудность регулирования работы компрессора, особенно при наличии нескольких камер с различными температурами охлаждения.
Рассольное охлаждение. При рассольном охлаждении понижение температуры воздуха в камерах достигается благодаря теплообмену между воздухом и холодным рассолом, циркулирующим в батареях, расположенных у стен или под потолком. Рассол, в свою очередь, охлаждается в специальном резервуаре, в котором установлен испаритель непосредственного охлаждения. Циркуляция рассола в батареях осуществляется насосами. Рассол в этой системе охлаждения играет роль промежуточного теплоносителя, т. е. служит передатчиком тепла от воздуха камер к хладагенту в испарителе.
Преимущества рассольного охлаждения заключаются в том, что:
• исключается возможность проникновения хладагента в камеры из испарителей, так как все его трубопроводы и он сам находятся в машинном отделении,
• путем дозировки потока холодного рассола, направляемого в камеру, достигается простота регулирования температуры воздуха в отдельных камерах.
Однако по сравнению с системами непосредственного охлаждения требуется дополнительное оборудование — резервуар для рассола, насос, трубопроводы большого диаметра, а чтобы разместить все оборудование, требуется большая площадь для машинного отделения.
Используется компрессор большей холодопроизводительности, так как при наличии теплоносителя (рассола) хладагент должен кипеть при более низкой температуре. При этом снижается как холодопроизводительность, так и экономичность работы системы. Больше расходуется энергии на передачу холода
Воздушное охлаждение. При воздушном охлаждении в камеры поступает воздух, охлаждаемый в специальных аппаратах — воздухоохладителях. Охлаждая камеры, воздух отепляется и увлажняется. Проходя через воздухоохладитель, он вновь охлаждается и частично осушается.
Воздухоохладители бывают сухие и мокрые. В сухом воздухоохладителе воздух охлаждается вследствие соприкосновения с сухой поверхностью батарей (с кипящим хладагентом или холодным рассолом).
В мокрых воздухоохладителях воздух охлаждается путем непосредственного контакта с разбрызгиваемым холодным рассолом или холодной водой.
В настоящее время применяют в основном сухие воздухоохладители, главным образом непосредственного охлаждения.
Воздушное охлаждение является весьма перспективным как для термической обработки продуктов (охлаждения и замораживания), так и для их хранения. Его основные достоинства:
• побудительная циркуляция воздуха, благодаря которой интенсифицируется теплообмен между ним и продуктами;
• возможность предварительного охлаждения и осушения наружного воздуха, подаваемого в камеры для вентиляции;
• большая возможность, чем при батарейном охлаждении, регулирования температуры и влажности воздуха в камерах;
• равномерность распределения температуры воздуха по всему объему камеры.
К недостаткам воздушного охлаждения относятся: большая усушка продуктов, увеличенный расход электроэнергии за счет применения вентиляторов.
Как рассчитать температуру наружного воздуха для подбора конденсатора
Фреоновые парокомпрессорные холодильные установки с воздушными конденсаторами получили широкое распространение в коммерческом и промышленном холоде.
Чтобы обеспечить работоспособность таких установок в период действия высоких температур наружного воздуха, необходимо не только правильно рассчитать мощность конденсатора, но и подобрать его для корректно выбранной температуры наружного воздуха.
Сознательное занижение расчетной температуры наружного воздуха, принимаемой для подбора воздушного конденсатора, приводит, естественно, к снижению стоимости холодильного оборудования и возможности выиграть тендер на поставку и монтаж.
Однако, это чревато далеко идущими последствиями, начиная от несоблюдения указанных в техническом задании температурных режимов в холодильных и технологических камерах, и заканчивая отказами в работе оборудования по причине срабатывания предохранительных устройств при высоких температурах наружного воздуха.
Поэтому к выбору расчетной температуры наружного воздуха при проектировании холодильных установок следует подходить с особой тщательностью.
Как показывает практика, чаще всего воздушные конденсаторы работают в наиболее неблагоприятных условиях, так как их преимущественно устанавливают на стороне здания, в течение длительного времени облучаемой солнцем, или на плоской кровле.
При этом температура воздуха на входе в конденсатор будет существенно выше температуры воздуха в тени. Например, согласно экспериментальным и расчетным данным, температура поверхности плоской кровли может достигать +60. +75 °C, что непременно сказывается на повышении температуры воздуха над ней. А ведь именно этот воздух и поступает на вход в воздушный конденсатор.
В современных нормативных документах, связанных с холодильной техникой, расчетные параметры наружного воздуха для подбора холодильного оборудования, и в том числе воздушных конденсаторов, никак не регламентируются.
В смежной области — системах кондиционирования воздуха (СКВ) — существует хорошая нормативная база, в том числе СП «Отопление, вентиляция и кондиционирование», который периодически обновляется и совершенствуется. С 1 июля 2021 действует уже третья редакция этого документа [1].
Уже в первой редакции СП «Отопление, вентиляция и кондиционирование» (2012 год) было указано:
п.9.17. Параметры наружного воздуха для расчета конденсаторов с воздушным охлаждением … следует принимать с учетом места их размещения (в тени, на солнце, на плоской кровле вблизи крыш или стен и др.), но не менее расчетных параметров наружного воздуха для обслуживаемых систем.
Но конкретные рекомендации в нормативном документе не были приведены.
Расчетные параметры наружного воздуха — это так называемые параметры «Б», которые определяются по СП «Строительная климатология» [2]. В частности, температура по параметрам «Б» — это температура воздуха обеспеченностью 0,98, которая берется из таблицы 4.1 СП [2] (графа 4).
Впервые учитывать место размещения воздушного конденсатора путем соответствующего увеличения расчетной температуры воздуха (относительно температуры по параметрам «Б») было предложено автором в 2014 году в книге [3] на примере моноблочных чиллеров с воздушными конденсаторами.
Рассматривались три основных случая размещения чиллера с воздушным конденсатором: в тени, на стороне здания, облучаемой солнцем, и на плоской кровле.
Автором была применена следующая формула для определения расчетной температуры наружного воздуха:
где tР — расчетная температура наружного воздуха для подбора воздушного конденсатора,
tНВ — расчетная температура наружного воздуха по параметрам «Б»,
Δt — увеличение температуры в зависимости от места установки, определяемое по следующей таблице [3].