Ayaklimat.ru

Климатическая техника
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Лабораторная работа № 9 Тема: Испытания на плотность. Вакуумирование системы

Лабораторная работа № 9 Тема: Испытания на плотность. Вакуумирование системы.

Ознакомиться с основными принципами испытания системы на плотность и ваккумирования системы.

Теоретическая часть:

1. Испытания на плотность

1.1 По окончании монтажа или ремонта, при котором из системы был полностью удален хладагент, должны быть про­ведены пневматические испытания всех трубопроводов хлада­гента вместе с арматурой, аппаратами и сосудами в соответ­ствии с требованиями Правил Регистра.

В случае ремонта отдельных элементов системы хладагента пневматическим испытаниям подвергаются, как правило, только эти элементы.

1.2 Пневматические испытания производятся инертным газом (азот, углекислота) или осушенным воздухом. Азот и углекислота подаются в систему из баллона (обязательно че­рез редуктор), а воздух — от заводской системы сжатого воз­духа или судового воздушного компрессора с применением водомаслоотделителей и осушительных патронов достаточных раз­меров.

Производить пневматические испытания компрессором, вхо­дящим в состав холодильной установки, запрещается.

1.3 Пневматические испытания производят при наличии документов, подтверждающих проведение испытаний трубопроводов, аппаратов и сосудов на прочность и с соблюдением мер, почивающих безопасность испытаний:

1) вентиль на наполнительном трубопроводе от источника давления и манометры должны быть выведены за пределы по­мещения, в котором находится испытываемый объект;

2) добавлять в воздух аммиак при испытании на плотность, категорически запрещается;

3)на время повышения давления в системе или отдельных ее элементах люди удаляются из помещения, где находится испытываемый объект;

4)запрещается под давлением выполнять сварку и чеканку швов, а также обстукивание сварных швов молотком;

5)присутствие в помещении, где находится испытываемый объект, посторонних лиц, а также проведение в этих помеще­ниях работ, не связанных с испытаниями, запрещается.

1.4 Если во время испытания систем давлением возможно повреждение сальников или приборов, они должны быть за­благовременно отключены или сняты.

1.5 Повышение давления в системе производится поэтапно. Для холодильных установок, имеющих деление на стороны низ­кого и высокого давлений, сначала во всей системе давление поднимается примерно до 0,1 полного пробного давления для стороны низкого давления, затем до 0,3, до 0,6 и до полного пробного давления для стороны низкого давления. После этого сторона низкого давления отключается и производится повы­шение давления на стороне высокого давления до полного проб­ного для этой стороны.

Для холодильных установок, не имеющих деления на сто­роны низкого и высокого давлений, сначала во всей системе давление поднимается примерно до 0,1 полного пробного дав­ления, затем до 0,25; 0,5; 0,75 и до полного пробного давления.

После каждого этапа повышения давления осматривают элементы системы. Во время осмотра давление в системе не повышают. Герметичность сварных швов, соединений, труб и сальников системы проверяют путем нанесения на них мыльного раствора, в который рекомендуется добавлять глицерин для предохранения раствора от высыхания, или полимерным индикатором герметичности по ТУ 28 РСФСР 01-15-024—81 (см. приложение 9).

В труднодоступных местах для осмотра рекомендуется ис­пользовать зеркало.

1.6 При пневматическом испытании вся система хладагента должна оставаться под давлением в течение 18 ч. Изме­нение давления фиксируется по образцовому манометру через каждые 2 ч. Падение давления за время испытаний не должно превышать 2 % от первоначальной величины при условии по­стоянства температуры окружающего воздуха.

При изменении температуры воздуха в помещении необхо­димо произвести перерасчет давления по формуле:

Pкон = Pнач * (273+tкон)/ (273 + tнач)

где Pкон, Pнач абсолютное давление в системе в конце и начале испытаний соответственно, Па (ата); tнач, tкон — температура воздуха в помещении в начале и конце испытаний соот­ветственно, °С.

В случае падения давления ниже рассчитанного по этой формуле необходимо найти места утечек воздуха (инертного газа) и устранить неплотности.

1.7 При обнаружении неплотностей необходимо: — места пропусков отметить мелом;

— постепенно понизить давление до атмосферного;

— устранить неплотности и повторить испытания.

Запрещается производить работы по устранению неплотно­стей в системе, находящейся под давлением.

Если во фланцевом или штуцерно-торцевом соединении, за­тянутом до предела, обнаруживается пропуск, необходимо сме­нить прокладку.

1.8 После окончания испытаний на плотность воздух или газ осторожно выпускается из системы в атмосферу. Воздух или газ рекомендуется отводить при помощи временного воз­духовода или рукава к заборному отверстию вытяжной вентиляции. После окончания испытаний подключаются отключен­ные сальники или приборы.

Перед выпуском воздуха проверяется система аварийного слива хладагента (если она имеется) поочередным открытием вентилей на станции аварийного слива.

1.9 Систему хладагента с подключенными приборами авто­матизации холодильной установки на хладоне после пневмати­ческих испытаний рекомендуется дополнительно проверить на плотность следующим образом:

подавая хладон из баллона в систему в соответствии с указаниями, создать давление в системе

2,94*10 5 —3,92*10 5 Па (3—4 кгс/см 2 );

повысить давление в системе азотом, углекислотой или осушенным воздухом до полного пробного для стороны низкого давления;

проверить систему на плотность галоидной лампой или электронным течеискателем;

выполнить указания пп. 2.7 и 2.8.

1.10 Система охлаждающей воды холодильной установки вместе с водяной частью конденсаторов и другими элементами системы, а также рассольная система с рассольной частью ис­ парителей и другими элементами системы должны быть испытаны гидравлическим давлением в соответствии с требованиями Правил Регистра.

1.11 Открытые корпуса (расширительные баки, баки-концентраторы и пр.) испытываются наливом воды.

2. Ваккумирование системы

2.1 После завершения испытаний на плотность необходимо полнить работы по вакуумированию системы хладагента целью удаления воздуха, осушки системы и проверки плотности системы под вакуумом.

Вакуумирование производят вакуум-насосом до остаточного давления не более 1,07*10 3 Па (8 мм рт. ст.) для установок на хладоне и 5,3*10 3 Па (40 мм рт. ст.) на аммиаке.

Вакуумирование необходимо выполнять при температуре воздуха в помещении не ниже 10 °С.

После достижения указанной выше величины вакуума для осушения системы установки на хладоне вакуумирование должно продолжаться в течение 6 ч.

Во избежание попадания в систему масла, находящегося в вакуум-насосе, при случайных остановках насоса между на­сосом и системой должна быть предусмотрена резервная ем­кость, равная наибольшему количеству масла, заливаемого в вакуум-насос.

2.2 Вакуумирование холодильной установки вакуум-насо­сом следует производить в следующем порядке:

отсоединяют мановакуумметр от одного из аппаратов установки и подсоединяют на его место специальный вакуум­метр;

открывают все вентили на трубопроводах, аппаратах и компрессорах, за исключением вентилей, сообщающих систему хладагента установки с атмосферой;

подсоединяют к одному из вентилей системы (наполни­тельному, воздухоспускному, манометровому или др.) трубку или специальный резиновый шланг от вакуум-насоса;

Читайте так же:
Как регулировать холодильник охлаждению

включают вакуум-насос и откачивают систему до до­стижения требуемого вакуума.

При невозможности достижения нужного вакуума необхо­димо выяснить и устранить причину — неплотность системы, наличие избыточной влаги и т. п.

2.3 В случае ремонта холодильной установки силами эки­- пажа судна при отсутствии вакуум-насоса допускается, как исключение, удалять воздух из системы хладагента компрессором, входящим в состав холодильной установки (если это не противоречит указаниям инструкции но эксплуатации ком­прессора). Удаление воздуха в этом случае производится до остаточного давления, обеспечиваемого конструкцией компрессора, и осуществляется в следующей последовательности:

выполняются работы по п. 2.2 (1, 2);

закрывается нагнетательный запорный вентиль компрес­сора, которым будет произведено вакуумирование, и открыва­ется специальный вентиль для удаления воздуха на компрес­соре (при его отсутствии ослабляется фланцевое соединение перед нагнетательным запорным вентилем компрессора);

пускается в ход компрессор.

В случае чрезмерного повышения давления нагнетания ком­прессора, вызванного недостаточным сечением отверстия воздухоспускного вентиля (в начальный период вакуумирования), компрессор необходимо остановить, дождаться полного выхода воздуха через вентиль и вновь пустить компрессор.

Поршневой компрессор останавливают также в случае не­обходимости охлаждения цилиндров, закрывая при этом воздухоспускной вентиль или затягивая ослабленное фланцевое со­единение.

2.4 Удаление воздуха из отдельных участков трубопровода или аппаратов ограниченной вместимости холодильных уста­новок на хладоне может быть произведено продувкой их хладоном из баллона или из находящейся под давлением хладона части системы. При этом впуск хладона необходимо произво­дить осторожно, слегка приоткрывая вентиль на баллоне или системе, чтобы хладон не смешивался с воздухом, а вытеснял его через вентиль или ослабленное соединение в атмосферу. Для лучшего удаления воздуха операция продувки повторяется несколько раз при подаче хладона небольшими порциями.

2.5 После окончания вакуумирования вакуум-насос или компрессор останавливают, закрывают вентиль, через который производилось вакуумирование, или воздухоспускной вентиль компрессора (если вакуумирование производилось компрессо­ром холодильной установки), или затягивают ослабленное фланцевое соединение.

Система хладагента должна выдерживаться под вакуумом в течение 18 ч. Давление фиксируется в течение этого времени через каждые 2 ч, а для установок на хладоне — также и после первого часа.

Для холодильных установок на хладоне повышение давления в системе за 18 ч не должно быть более 667 Па (5 мм рт. ст.), причем за первый час допускается повышение давления не бо­лее чем на 133 Па (1 мм рт. ст.).

Для холодильных установок на аммиаке допускается повы­шение давления в течение первых 6 ч не более чем на 2,7* 10 3 Па (20 мм рт. ст.), а в течение оставшегося времени выдержки давление должно оставаться постоянным.

2.6 В случае повышения остаточного давления сверх ука­занного в п. 2.5 вакуумирование повторяется в течение 6 ч, и система вновь ставится на выдержку в течение 18 ч.

2.7 Если система не будет признана плотной по результатам выдержки под

вакуумом, необходимо вновь произвести пневматические испытания системы на плотность, выявить и устранить неплотности, а затем повторить вакуумирование и выдержку под вакуумом.

2.8 При вакуумировании системы хладагента холодильной установки (особенно установки на хладоне) рекомендуется для обеспечения лучшей осушки системы от влаги заполнять во­дяную полость конденсаторов и рассольную полость испарите­лей водой, нагретой до 50 °С. С этой же целью (при проведении работ по вакуумированию в холодное время года) необходимо заблаговременно принять меры по повышению температуры воздуха в помещениях с аппаратами и трубопроводами хлада­гента (включить паровые и электрические грелки, вентиляторы морозильных аппаратов и т.п.).

2.9 Непосредственно после окончания работ по вакуумированию системы холодильной установки, работающей на ам­миаке и хладоне-22, необходимо произвести наполнение системы хладагентом.

Вакуумирование системы кондиционирования своими руками

После покупки климатического оборудования важным моментом является монтаж сплит системы. От того, насколько качественно будет проведена работа, зависит, насколько долго и безотказно устройство будет эксплуатироваться. Поэтому сразу уточняются этапы монтажа – установка внутреннего блока, нюансы монтажа внешнего, вакуумирование системы кондиционирования.

Подключение, вакуумирование и замена радиатора кондиционера своими руками – это достаточно сложные процедуры, требующие специальных навыков и знаний.

Подключение кондиционера

Перед подключением кондиционера следует подготовить необходимый инструмент, навесить наружный и внутренний блоки. Последовательность действий:

  • Для прокладки труботрассы и электрических кабелей в стене между блоками сверлят отверстия диаметром около 6 сантиметров.
  • В качестве трубопроводов используют медные трубки, характеристики которых указаны в мануале. Трубы нарезают специальным инструментом, исключающим появление металлической стружки, развальцовывают и сгибают с помощью трубогиба.
  • Трубу подсоединяют к месту крепления, предварительно обработанному герметиком.
  • Производят вакуумирование.
  • Открывают сервисный клапан.
  • Подсоединяют электрические провода.
  • Монтируют дренажный шланг.
  • Все трубопроводы и дренажную трубку перематывают утеплительной лентой.

Когда необходимо вакуумирование

При монтаже оба блока соединяются между собой медными трубами для циркуляции хладагента. Это и есть контур кондиционера. После прокладки медной магистрали все трубы герметично соединяются и затягиваются во избежание попадания атмосферного воздуха внутрь. Даже при большом старании удалить воздух из труб продуванием, полностью избавиться от него не удастся.

Вакуумирование кондиционера – обязательная процедура как для бытовых устройств, где длина магистрали не превышает 2 метров, так и для офисных или промышленных инсталляций, где длина фреоновых труб может достигать десятков метров.

Для чего это нужно:

  • пары воздуха растворяются в масле, которое отвечает за смазку деталей компрессора, это приводит к изменению характеристик смазочного материала и оно хуже выполняет свои функции: не образует плотную пленку на поверхности трущихся деталей; механизм быстрее изнашивается и повышается риск заклинивания компрессора;
  • влага изменяет химические показатели охлаждающей жидкости, что грозит снижением производительности кондиционера, на контуре будут заметны признаки обмерзания.

Вакуумирование проводится перед первым включением, чтобы не допустить контакт масла с остатками воздуха или воды.

Оборудование для вакуумирования и дозаправки

Для работы нужны следующие инструменты и приборы:

  • Вакуумная станция для кондиционеров. Перед заправкой хладагента подключается к контуру и осушает его. Манометры на приборе показывают уровень вакуума. В работе мастера используют двухступенчатые модели, которые экономичны в плане расхода электроэнергии, просты в монтаже. Хорошую очистку дают гетерионные вакууматоры для кондиционеров, но редко применяются, так как стоят дорого.
  • Манометрический коллектор.
  • Набор отверток и ключей для работы со штуцерами.
  • Баллон с фреоном для последующей заправки.
Читайте так же:
Регулировка холода в холодильнике zanussi

Самым важным прибором является насос, который будет герметизировать трубопровод. Удобство в работе создает вес устройства – чем оно легче, тем проще. Модели, которые имеют резиновую опору для снижения уровня вибраций, более удобны в эксплуатации.

При работе насос расходует масло, поэтому индикация его уровня – полезная функция для человека, который постоянно работает с прибором.

Для удаления паров должен быть предусмотрен клапан, а также комплект штуцеров, предназначенный для внешнего блока, через которые происходит эвакуация воздуха.

На рынке лидирует техника немецких, американских, швейцарских производителей оборудования для климатической техники различного ценового уровня. Некоторые китайские фирмы поставляют продукцию, которая не уступает по качеству европейским аналогам, но гораздо дешевле.

Профессиональные ремонтники используют большие баллоны с хладагеном, так как часто проводят монтаж, заправку и дозаправку трубопроводов клиентов сервиса. Для одноразового применения достаточно купить небольшой объем фреона, чтобы не переплачивать.

Подготовка сплит системы

Перед началом работы вакуумного насоса его подключают через манометрическую станцию к крану наружного блока кондиционера. Манометрическая станция нужна для контроля уровня вакуума, после достижения которого прибор отключается. Некоторое время после окончания процесса вакуумирования мастер наблюдает за показателями приборов. Если они не меняются, проводится работа по заполнению контура хладагентом – система герметична, ненужные пары удалены. В случае, если показания манометра меняются, магистраль проверяется на трещины – фреон будет вытекать из труб, что потребует ремонта вскоре после монтажа.

Перед заполнением контура охлаждающей жидкостью насос отсоединяют. При помощи ключа-шестигранника открывают фреоновые краны, жидкость поступает в контур кондиционера, издавая шипящий звук. Сколько хладагента необходимо заправить и какого типа, описано в инструкции производителя.

После заполнения труб хладагентом за показаниями манометра наблюдают полчаса. За это время не должны меняться показатели давления. В противном случае ищут протечку и заново вакуумируют и заполняют магистраль. Утечки возникают из-за слабого или очень сильного зажима гаек на штуцерах, плохой пайки или развальцовки медных труб. Заломы на трубах также могут быть причиной утечки фреона, так как излишнее натяжение металла образует трещины.

Как долго идет процесс вакуумирования

Процесс вакуумирования кондиционера длится от 10 до 20 минут. Это зависит от мощности сплит системы, толщины труб. Для промышленных или офисных систем вакуумирование и заправка фреоном длится дольше, так как длина трубопровода достигает нескольких десятков, а иногда и сотен метров. На таких объектах наблюдение за показателями глубины вакуума после герметизации длится около часа. Иногда требуется повторное включение устройства.

Когда показатели в трубопроводе перестают меняться в определенный промежуток времени, можно переходить к заполнению их фреоном.

Вакуумирование кондиционера своими руками

Чтобы вакуумировать кондиционер самостоятельно, необходимо запастись шлангами низкого и высокого давления.

Конец шланга без выступа подсоединяется к насосу. Противоположный конец, снабженный штырьком, крепится к золотнику газового порта, после чего насос запускается на 10 минут. По окончании вакуумирования необходимо приоткрыть клапан для запуска фреона и тут же закрыть его, отсоединив шланг. Небольшое количество хладагента будет потеряно, но это нормально, потеря возможна и при замене радиатора кондиционера.

Во время продувки трасс длиной больше 6 метров метод вакуумирования используется для сохранения фреона, который в противном случае будет выпущен, а дозаправка не представляется возможной.

После выкачивания воздуха и влаги из трубопровода следует отвинтить клапаны жидкости и газа до упора (все семь оборотов). Соединения обрабатываются мыльной пеной для выявления возможных утечек.

Изучение и разработка оборудования для заправки холодильных агрегатов компрессионного типа маслом и хладагентом

С помощью этого устройства достигаются повышение точности заполнения агрегата хладагентом и уменьшение возможности аварии.

Принцип действия устройства следующий: паровая часть баллона 1 (см. рис.3.1) через фильтр-осушитель 2 и редукционный клапан 3 соединена с заправочной магистралью 4, к которой через вентиль 5 и быстросъемную муфту 7 подсоединяется холодильный агрегат 8. Одновременно через клапан 10 магистраль 11 для отвода паров хладагента через вентиль 9 также подключается к холодильному агрегату 8. На линии подключения холодильного агрегата установлен манометр 6. Редукционный клапан 3 настраивают на давление, равное давлению насыщения масла, находящегося в картере компрессора, а клапан 10 — на давление, соответствующее температуре кипения хладагента в испарителе в рабочем режиме.

..

Рис. 3.1 Схема устройства для заполнения холодильного агрегата хладагентом и маслом:

1 — баллон; 2 — фильтр-осушитель; 3 — редукционный клапан; 4 — заправочная магистраль;

5, 9 — вентили; 6 -манометр; 7 — быстросъемная муфта; 8 — холодильный агрегат; 10 – клапан;

— магистраль для отвода паров

Устройство работает следующим образом. Газообразный хладагент из баллона 1 через фильтр-осушитель 2 и редукционный клапан 3 вводят во всасывающую линию отключенного компрессора при открытом вентиле 5 на заправочной магистрали 4 и закрытом вентиле 9 на магистрали 11, отводящей пары хладагента, с давлением, равным давлению насыщения масла в картере компрессора.

Дозу хладагента, насыщающую масло, устанавливают исходя из рекомендуемого количества хладагента, заполняющего агрегат, по паспорту холодильника.

При достижении давления в агрегате, равного давлению в заправочной магистрали, вентиль 5 на заправочной магистрали 4 закрывается и включается герметичный компрессор холодильного агрегата 8. При достижении максимального давления на линии всасывания компрессора открывается вентиль 9 на линии, отводящей пары хладагента. Пары хладагента давлением выше давления кипения хладагента в испарителе в рабочем режиме удаляются через клапан 10 в линию, отводящую пары хладагента. Холодильный агрегат отсоединяют по окончании обкатки холодильного агрегата.

3.1.2 Переносная установка для вакуумирования и заполнения холодильных агрегатов хладагентом (ПУВЗ)

Установка предназначена для вакуумирования и заполнения хладагентом агрегатов бытовых холодильников. Конструктивно установка выполнена с учетом возможности её переноски по цеху и её доставки на дом к владельцам холодильников.

На каркасе установки размещен вакуум-насос 2 (рисунок 2.20) с электродвигателем 3. Над вакуум-насосом расположены короб со смонтированными в нем тремя вентилями, система гидропневморазводки, а также система электроразводки и коммутации. К основанию каркаса прикреплена дугообразная ручка, изготовленная из трубы.

К системе гидропневморазводки подключен мановакуумметр. С правой стороны установки находится дозатор с манометром. На дозаторе установлена стеклянная трубка с измерительной шкалой. На дне дозатора расположен нагревательный элемент для подогрева хладагента. К выходному штуцеру установки с помощью накидной гайки крепится гибкий рукав с быстросъемной муфтой для подключения к баллону с хладагентом и холодильному агрегату.

Принцип работы установки основан на откачивании воздуха из системы холодильного агрегата и создании разрежения с последующим заполнением системы холодильного агрегата хладагентом из дозатора установки. При этом разрежение (вакуум) контролируется по мановакуумметру, давление в дозаторе — по манометру, количество заправляемого хладагента — по мерной шкале и переводной таблице. Установка и холодильный агрегат связаны гибким шлангом с быстросъемной муфтой.

Читайте так же:
Регулировка температуры холодильника вестел

..

Рис. 3.2 Схема установки ПУВЗ:

1 – вентиль впуска воздуха; 2 – вакуумный насос; 3 – электродвигатель;4, 7 – проходник;

5 – вентиль вакуумирования; 6 – мановакуумметр; 8 – вентиль заправки холодильного агрегата, дозатора; 9 – втулка; 10 – манометр; 11 – стравливающий клапан; 12 – дозатор.

..

Рис.3.3 Электрическая схемам установки ПУВЗ:

Х1 – подключение установки в сеть 220В; F – предохранитель; Х2 – подключение холодильного агрегата к установке; S 1 – включение вакуумного насоса; М – электродвигатель; С – конденсатор; S 2 – включение электронагревателя; Е — электронагреватель

Малогабаритный стенд предназначен для ремонта холодильных агрегатов. С помощью стенда можно определить дефект и заполнить агрегат хладоном на дому, а также в передвижных и стационарных мастерских.

Корпус стенда (рис. 3.4) выполнен из листового алюминия и разделен перегородкой на два отсека. В один отсек вставлен и закреплен блок приборов 14 , в другом отсеке расположены: баллон 10 со шлангом, мановакуумметр 13 , соединительный шнур 7 для питания стенда, шланг 11 с полумуфтой 12 , ключ специальный герметичный 9 , шнур 8 подключения агрегата к стенду.

Крышка стенда служит для предохранения приборов от повреждения во время транспортировки.

На приборной панели блока находятся: вольтметр 17 , амперметр 15 , кнопка 18 шунтирования амперметра, вентиль 19 , две полумуфты агрегатные 20 и 22 , предохранитель 3 , сигнальная лампа 6 , тумблеры 1 и 5 , ручка 2 автотрансформатора, ручки 4 и 16 , розетка 21 .

Внутри блока на кронштейне закреплены автотрансформатор ЛАТР-1М и кулисный компрессор ХКВ-6.

Мановакуумметр 13 снабжен стендовой полумуфтой. Один конец соединительного шнура 8 армирован вилкой для включения в розетку стенда, а другой конец с тремя выводами предназначен для подключения к компрессору агрегата. Проверка агрегата на запускаемость. Включить тумблер 1 , подающий напряжение на розетку стенда. Вращая ручку 2 автотрансформатора и следя за показанием вольтметра, установить напряжение меньше номинального, необходимого для работы проверяемого холодильника. Включить в розетку стенда шнур проверяемого холодильника.

Стенд обеспечивает проведение следующих операций:

— проверку компрессора агрегата на запускаемость при пониженном напряжении; измерение потребляемого тока;

— подачу повышенного напряжения 250 В при напряжении в сети 220±5 В;

— запуск компрессора ремонтируемого агрегата без пускового реле;

— вакуумирование агрегата в пределах 29,5-39,2 кПа (0,3-0,4 кгс/см);

— заполнение агрегата хладоном;

— возможность контроля дозы хладона по давлению всасывания.

Плавно повышая напряжение, следить по вольтметру, при каком напряжении запустится проверяемый компрессор холодильника.

Ток контролируют после запуска проверяемого холодильного агрегата нажатием кнопки 18 и по показаниям амперметра.

Запуск агрегата без пускового реле. Три вывода шнура 8 надеть на проходные контакты контролируемого компрессора. Вилку шнура вставить в розетку стенда. Включить тумблер 1 на 1-2 с. Нормальный запуск агрегата свидетельствует о неисправности пускового реле.

При подаче на холодильный агрегат повышенного напряжения (при напряжении в сети 220 В) вращать ручку 2 автотрансформатора. Следя за показанием вольтметра, установить напряжение 250 В. Присоединить к стенду проверяемый агрегат. Включить на 1-2 с тумблер 1 .

Вакуумирование. Перед началом работы присоединить к компрессору герметичный ключ или надеть на технологический патрубок (трубку заполнения) агрегатную полумуфту. Установить на полумуфту 20 стенда мановакуумметр 13 . Шланг 11 стенда подсоединить к агрегату. Запустить компрессор стенда, включив тумблер 5 . Открыть вентиль 19 , следить за показанием мановакуумметра. После вакуумирования вентиль 19 закрыть. Тумблер 5 выключить.

Заполнение агрегата хладоном. Присоединить баллон к стенду, состыковав полумуфты 12 и 22 . Подключить ремонтируемый холодильный агрегат к электросети. Периодически открывая вентиль баллона, довести давление хладона по мановакуумметру до стабильной величины 88,2-107,8 кПа (0,9-1,1 кгс/см 2 ).

Закрыть вентиль. Заполнение холодильного агрегата считать законченным при равномерном обмерзании всего испарителя.

..

Рис. 3.4 Стенд СР-1 для ремонта холодильных агрегатов:

1, 5 — тумблеры; 2 — ручка автотрансформатора; 3 — предохранитель; 4,16— ручки; 6 — лампа; 7 — соединительный шнур; 8 — шнур; 9 — ключ герметичный; 10 — баллон со шлангом; 11 — шланг; 12, 20, 22— полумуфты; 13—мановакуумметр; 14—блок приборов; 15 — амперметр; 17—вольтметр; 18—кнопка шунтирования амперметра; 19 — вентиль; 21 — розетка

..

Рис.3.5 Электрическая схема стенда СР-1:

R — резистор 3,9 кОм; А — амперметр со шкалой на ЗА; AT — автотрансформатор типа ЛАТР-1М; В1, В2 — переключатели типа ТВ1-4; Кн1 — кнопка; ЛЗ — лампа типа КМ-48-50; М — компрессор типа ХКВ-6 с пусковым реле; Пр — предохранитель на 5 А; Р— реле пускозащитное типа LS -0.8 B ; РШ — розетка двухполюсная типа РД-1; В — вольтметр Э8003 со шкалой на 250 В.

3.1.4 Переносная станция 10805-RD-4 фирмы «Рефко» (Швейцария) для вакуумирования и зарядки хладагентом холодильных установок

Разработаны для вакуумирования и зарядки герметичных холодильных компрессоров, работающих на R12, R22, R502 и R134a. Их применяют прежде всего при техническом обслуживании холодильных установок. Основные преимущества этих станций — незначительная масса, высокая производительность насоса, простота в эксплуатации.

Станция 10805-RD-4 (рис. 3.6) состоит из следующих элементов, смонтированных на станине: двухступенчатого вакуумного насоса; цилиндра с поворотной шкалой; манометра со шкалой температур для R12, R22, R502; предохранительного клапана и встроенного электронагревателя; манометрического блока с манометром и мановакуумметром (имеющими шкалы температур и давлений хладагентов R12, R22, R502 в состоянии насыщения), смотрового стекла, вентилей со штуцерами для присоединения шлангов; вакуумного блока с вакуумметром, вентилем и предохранительным клапаном; щитка с электрическим конденсатором, тумблерами для включения вакуумного насоса и электронагревателя цилиндра и клеммника для присоединения станции к электросети.

Для заполнения цилиндра станции хладагентом к вентилю баллона с хладагентом подключают фильтр-осушитель, который гибким шлангом соединяют со штуцером 22. При открытых вентилях 4, 8, 18 и 21 тумблером 24 включают вакуумный насос и вакуумируют цилиндр. По достижении остаточного давления, равного 5 Па, закрыв вентили 4 и 21, останавливают вакуумный насос. Открыв вентиль баллона, а также вентили 8, 17 и 18 станции, заполняют цилиндр хладагентом, контролируя его уровень. Чтобы из баллона в цилиндр поступило больше жидкого хладагента, его пары выпускают через обратный клапан.

Гибкими шлангами штуцера станции соединяют со штуцерами на всасывающем и нагнетательном вентилях компрессора холодильной установки. Включив вакуумный насос станции тумблером 24 при открытых вентилях 4, 8, 18 к 17, вакуумируют холодильную установку до остаточного давления 5 Па. Спустя 1 ч работы при этом остаточном давлении вакуумный насос выключают и выдерживают систему под вакуумом в течение 1 ч. Затем, закрыв вентили 4 и 21 и открыв газобалластный вентиль и вентили 8, 17 и 18, вводят из цилиндра станции в холодильную установку осушенный хладагент до достижения избыточного давления 30. 50 кПа, нарушая вакуум, что предотвращает реконденсацию паров воды, испарившейся при вакуумировании, и способствует их полному удалению.

Читайте так же:
Регулировка реле холодильника индезит т133

Таким же образом проводят второе вакуумирование холодильной установки и вновь нарушают вакуум.

После третьего вакуумирования холодильную установку заполняют необходимым количеством хладагента из цилиндра станции. Для этого закрывают все вентили станции, кроме 8, 17 и 18. Когда давления хладагента в холодильной установке и цилиндре станций сравняются (что будет видно по прекращению циркуляции хладагента через смотровое стекло), тумблером 23 включают электронагреватель, встроенный в цилиндр станции. В результате давление в цилиндре повышается и холодильная установка продолжает заполняться хладагентом. Количество хладагента, поступившего в холодильную установку, определяют по шкале цилиндра, которая имеет корректировочную сетку по давлению хладагента в цилиндре.

..

Рис. 3.6 Переносная станция 10805-RD-4 фирмы «Рефко»:

1 — вакуум-насос; 2 — газобалластный вентиль; 3, 12 — предохранительные клапаны; 4, 8, 17, 18, 21 — вентили; 5 — вакуумный блок; 6 — вакуумметр; 7 — ручка; 9 — мановакуумметр; 10 — смотровое стекло; 11, 13 — манометры; 14 — обратный клапан; 15-цилиндр для хладагента; 16 — шкала цилиндра; 19, 22 — штуцера; 20 — станина; 23, 24 — тумблеры; 25 — электрический щиток

Оснащение предприятий по ремонту бытовых машин высокопроизводительным оборудованием, приспособлениями и специальными инструментами—одно из важнейших условий создания индустриальных методов ремонта, повышения его качества и снижения трудовых затрат.

Характерной особенностью ремонтных предприятий является многообразие технологических процессов, применяемых при ремонте бытовых машин. Это обстоятельство обусловливает использование большого количества оборудования различных видов и типажа, значительная часть которого является нестандартным, т. е. серийно не выпускаемого промышленностью. В настоящее время стоимость нестандартного оборудования составляет около 30—40% от общей стоимости технологического оборудования предприятий по ремонту бытовых машин.

Для заправки холодильных агрегатов компрессионного типа маслом и хладоном используют как малогабаритные, переносные устройства, так и стационарные стенды отечественного и иностранного производства (стенд для заполнения агрегатов хладоном и маслом, стенд СР-1, ПУВЗ, переносные зарядные станции, стенд СФ-1, переносные станции фирмы «Рефко» и другие).

Список используемой литературы

1. Лепаев Д.А. – Справочник слесаря по ремонту бытовых электроприборов и машин. – Легпромбытиздат, 1986.

2. Лепаев Д.А. – Ремонт бытовых холодильников. – Легпромбытиздат, 1989.

3. Кочегаров Б.Е. – Бытовые машины и приборы. Ч1. – Изд-во ДВГТУ, 2003.

4. Вейнберг Б.С., Вайн Л.Н. – Бытовые компрессионные холодильники. – Пищевая промышленность, 1979.

5. Кожемяченко А.В., Петросов С.П. – Техника и технология ремонта бытовых холодильных приборов. – Академия, 2004.

Как работает холодильное оборудование?

Как работает холодильное оборудование?

Замечали, что, когда вы выходите из душа, вам всегда прохладно? Дело в том, что влага при испарении поглощает тепло. А при конденсации, наоборот, тепло выделяется. На этих явлениях и основан принцип действия паровых компрессорных холодильных машин– в них по замкнутому кругу двигается специальная жидкость (хладагент). Хладагент испаряется в испарителе и конденсируется в конденсаторе. При этом испаритель охлаждается, а конденсатор греется.

Чтобы хладагент испарялся и конденсировался в нужных местах, в холодильном контуре должны присутствовать еще два элемента – компрессор и дросселирующее устройство.

Компрессор сжимает газообразный хладагент в конденсаторе, где он под действием высокого давления переходит в жидкую форму, выделяя тепло. А дросселирующее устройство (капиллярная трубка или терморегулирующий вентиль) затрудняет движение хладагента и поддерживает высокое давление в конденсаторе. После дросселя давление в контуре намного ниже, и попавший туда хладагент начинает испаряться внутри испарителя, поглощая тепло. Далее он, уже в газообразном виде, снова попадает в компрессор, и цикл повторяется.

Многие холодильные установки комплектуются дополнительными элементами.

Фильтр-осушитель устанавливается перед дросселирующим устройством. Его задачей является извлечение из хладагента воды и механических частиц. При его отсутствии капилляр может засориться или замерзнуть.

Терморегулятор (термостат) выключает компрессор при достижении необходимой температуры.

Ресивер повышает эффективность холодильной установки. Без терморегулирущего вентиля (с капиллярной трубкой) скорость выработки холода является постоянной. И, если она будет слишком большой, компрессор будет часто включаться–выключаться, а если слишком маленькой — охлаждение будет идти слишком долго. Использование ТРВ позволяет изменять скорость охлаждения в больших пределах, но требует наличия ресивера для компенсирования колебаний расхода хладагента.

Различные датчики температуры и давления, управляемые электроникой регуляторы давления и клапаны используются для повышения эффективности устройства и поддержания специфических режимов работы.

Из холода в жар

Чаще всего холодильная машина используется именно для охлаждения — испаритель расположен в охлаждаемом объеме, а конденсатор вынесен в окружающую среду. Так работают кондиционеры, холодильники и морозильники. Но холодильный контур не только поглощает тепло на испарителе, но и выделяет его на конденсаторе. Нельзя ли использовать холодильную машину «наоборот» — для обогрева, расположив конденсатор в обогреваемом помещении, а испаритель вынеся наружу?

Еще как можно. Холодильная машина использует электроэнергию не для непосредственного нагрева (как ТЭН), а для переноса тепла, поэтому эффективность ее выше, чем у обычного электронагревателя. Многие современные кондиционеры могут работать «наоборот», используя теплообменник внутреннего блока как конденсатор, а теплообменник внешнего блока – как испаритель. В таком режиме на 1 кВт потребленной мощности кондиционер может произвести 2–6 кВт тепла. Греть комнату кондиционером может быть значительно выгоднее, чем электрообогревателем!

Однако здесь есть некоторые тонкости — эффективность холодильной машины уменьшается при падении температуры на испарителе и ее росте на конденсаторе. Это связано с тем, что теплообмен между двумя веществами происходит тем быстрее, чем больше разница их температур. А поскольку температура кипения хладагента постоянна, то, чем ниже температура в испарителе, тем медленнее идет теплообмен и тем меньше тепла он вырабатывает при той же потребляемой мощности. И при температуре окружающей среды до -5…-10°С эффективность кондиционера как отопительного прибора становится невысока.

Читайте так же:
Как регулировать температуру в холодильнике канди

Поэтому использовать кондиционер для отопления дома или квартиры можно, только если температура зимой не падает ниже -5°С.

В местах с более холодным климатом в последнее время все большую популярность получают тепловые насосы – паровые компрессорные холодильные машины, у которых испаритель помещен под землю на глубину, большую глубины промерзания. Поскольку там всегда сохраняется положительная температура, эффективность теплового насоса не зависит от времени года. Такие устройства намного экономичнее электрических обогревателей и могут использоваться для отопления жилища круглый год при любой температуре. К сожалению, высокая стоимость тепловых насосов пока препятствует их популярности.

Виды компрессоров

Поршневые компрессоры устанавливаются в основном в холодильниках и морозильниках. В большинстве моделей поршень приводится в движение обычным электродвигателем, двигающим поршень через шатунно-кривошипный, кулачковый или кулисный механизм.

Существуют также электромагнитные (линейные) поршневые компрессоры. В них цилиндр расположен внутри катушки, создающей электромагнитное поле, которое приводит в движение поршень.

Поршневые компрессоры способны создавать высокое давление, обеспечивая большой перепад температур на испарителе и конденсаторе. Кроме того, обычный поршневой компрессор имеет достаточно простую конструкцию, не требующую высокой точности изготовления деталей, соответственно стоят они недорого. Однако недостатков у поршневых компрессоров тоже хватает:

  • Несбалансированность однопоршневого компрессора является причиной высокого уровня шума и вибраций при работе.
  • Большое количество движущихся деталей приводит к ускоренному износу и снижению ресурса.
  • Опасность поломки при быстром повторном пуске. Сразу после остановки в цилиндре компрессора наличествует высокое давление. Если в этот момент включить компрессор, создается критическая нагрузка на двигатель, могущая привести к его повреждению.

Поэтому поршневой компрессор можно повторно запускать только через несколько минут после остановки, когда давление в системе выровняется. Защитой от повторного пуска снабжены далеко не все модели, поэтому холодильное оборудование рекомендуется подключать через реле времени с задержкой включения в 5–10 минут.

Ротационные компрессоры (иногда называемые роторными) создают давление за счет изменяющегося зазора между вращающимся ротором и корпусом компрессора.

Существуют различные модификации этого вида компрессоров — с эксцентричным ротором, с подвижными лепестками, с качающимся ротором, спиральный и т. п.

Все они обладают небольшими габаритами, низким уровнем шума и увеличенным ресурсом за счет снижения количества подвижных деталей. К недостаткам этого вида можно отнести сложность изготовления (ротор и корпус должны быть изготовлены с высокой точностью) и низкое максимальное давление. Такие компрессоры чаще используются в климатической технике, для которой не требуется создавать очень низкую температуру.

Ротационными и поршневыми список компрессоров не исчерпывается — существуют еще центробежные, винтовые, кулачковые и другие. Но в бытовой технике они используются реже.

Вне зависимости от вида компрессор может быть неинверторным (стандартным) или инверторным. У обычных компрессоров скорость вращения двигателя постоянна, для поддержания заданной температуры он периодически включается и выключается. В инверторных компрессорах двигатель подключен через частотный преобразователь (инвертор), с помощью изменения частоты напряжения меняющий скорость вращения электродвигателя. Такой компрессор поддерживает заданную температуру выставлением нужной скорости вращения. Инверторные компрессоры дороже, но экономичнее, эффективнее и имеют больший ресурс.

Типы хладагентов

В качестве хладагента в холодильных машинах используются различные жидкости и газы — аммиак, пропан, фреоны (смеси углеводородов). Используемый в холодильной машине хладагент сильно влияет как на ее характеристики, так и на условия эксплуатации. Например, кондиционер, заправленный фреоном R-134a (температура кипения -26,5 °С) при -30 на улице работать в режиме обогрева не будет вообще — фреон просто не вскипит в наружном блоке. Более того, попытка включения кондиционера в таких условиях с большой вероятностью приведет к его поломке — попадание жидкости (а не газа) в компрессор обычно выводит его из строя.

Чем ниже температура кипения хладагента, тем более низкую температуру можно получить на испарителе холодильной машины. Однако, понизить температуру в морозильнике, просто поменяв фреон на более «холодный», скорее всего, не выйдет — хладагенты с низкой температурой кипения требуют большего давления для конденсации. Компрессор, рассчитанный на фреон с высокой температурой кипения, просто не сможет создать такое давление. Поэтому при замене хладагента следует придерживаться рекомендаций из инструкции, и не заправлять хладагент с характеристиками, сильно отличающимися от рекомендованных.

В бытовых устройствах чаще всего используются следующие хладагенты:

Фреон R22 (хладон 22, хлордифторметан) до недавних пор часто использовался в холодильных и морозильных установках. Обладает достаточно низкой температурой кипения (-40,8°С), при утечке возможна дозаправка системы. Однако из-за вреда, наносимого окружающей среде (разрушение озонового слоя) R22 в последнее время используется редко, а во многих странах вообще запрещен.

R410A и R407С (хлорофторокарбонат, температура кипения -51,4°С) используются взамен R22. Они не вредят экологии, но требуют большего давления для конденсации, поэтому техника, заправляемая R410 или R407, стоит дороже. Кроме того, при возникновении утечек в системе, заполненной этими фреонами, могут возникнуть проблемы. Эти фреоны состоят из нескольких компонентов, которые улетучиваются неравномерно, поэтому при утечке более чем 40 % R410A дозаправка уже невозможна. Еще хуже обстоит дело с R407C – при возникновении утечки систему следует перезаправлять полностью.

R134 (тетрафторэтан) используется в кондиционерах взамен вышедшего из употребления R12. Температура кипения R134 составляет -26,3°С, поэтому в низкотемпературной технике он не используется. Однако, хоть R134 и не вреден для озонового слоя, он относится к газам, усиливающим парниковый эффект, поэтому безвредным его назвать нельзя.

R600a (изобутан) все чаще используется в холодильной технике вместо менее экологичного R134. Его преимуществами являются низкое давление конденсации и высокая удельная теплота парообразования – холодильники, использующие этот фреон, дешевле и экономичнее. Однако из-за высокой температуры кипения (-12°С) заправленную им технику нельзя использовать на улице при отрицательных температурах.

Следует также помнить о том, что каждый тип фреона требует использования определенного вида масла для смазки деталей компрессора. Обычно тип (а иногда и марка масла) приводятся в сопроводительной документации к фреону. Использование других масел может привести к поломке компрессора.

Как видно, ничего сложного в холодильной технике нет, а понимание принципов ее работы может значительно продлить жизнь технике, позволить сэкономить на электроэнергии и уберечь от неправильных действий, могущих привести к поломке прибора.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector