Ayaklimat.ru

Климатическая техника
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Технологии пиролиза, его продукты и дальнейшее применение

Технологии пиролиза, его продукты и дальнейшее применение

Рациональное человечество всегда искало новые методы и пути получения полезных ресурсов. Поэтому технологии, которые позволяют путем переработки отходов получать полезное сырье, всегда имеют повышенный спрос.

Данный подход решает сразу две задачи: утилизировать отходы, нивелируя захламление, и получить полезные материалы, экономя природные резервы.

К тому же есть вещества, перерабатывать которые можно только специальными методами. К таким универсальным технологиям и относится пиролиз.

Технология пиролиза

В конце процесса получают следующие продукты:

  • смесь газов (горючих и негорючих), ее называют — пиролизный газ, синтез-газ, пиролитический газ;
  • пиролитическое масло, служащее впоследствии топливом для печей или материалом для дальнейшей переработки;
  • вода;
  • пикарбон (уголь — твердый остаток, содержащий углерод).

Пиролиз любого вида проходит в 4 этапа:

  1. Сушка сырья в сушильной камере.
  2. Собственно пиролиз (перегонка).
  3. Горение твердых компонентов.
  4. Получение пиролитического масла, газа и углеродистого остатка.

Смотрите видео: Установка пиролиза. Всё об этом

пиролиз бытовых отходов, что такое пиролиз Пиролиз ТБО продукты процесса пиролиза схема переработки мусора Пиролизная печь (производительность 100 тонн в сутки)

Пиролизный завод

Обустройство и технологические процессы на таком заводе имеют ряд особенностей, а также требуют соблюдения определенных правил. Обязательно присутствуют:

  • просушка компонентов;
  • измельчение и обработка поступающего сырья на ленте;
  • процесс очистки жидкости;
  • формирование масляных жидкостей на основании пиролиза;
  • получение продуктов обмена.

Задумываясь о проблемах экологии, важно не только сортировать, но и уменьшать потребление.

Такая схема переработки полностью соответствует нормам безопасности, обеспечивая качественный очищенный продукт. Для функционирования завода требуется большое количество различных устройств и средств.

Оборудование

Пиролизная установка обеспечивает разложение органических отходов на молекулярном уровне. При этом вырабатывается энергия, которую можно использовать на дальнейших этапах производства.

В основу конструкции входит реактор. В верхних отсеках поступающие материалы высушиваются при температуре не более 200 градусов. В следующих контейнерах температура может достигать значений в 1 200 единиц. После этого остатки утрамбовываются.

Во время сгорания выделяется углерод, который позволяет поддерживать одну и ту же температуру без процесса окисления. В последнем отделении твердые остатки охлаждаются, прессуются и направляются на ликвидацию.

Есть несколько типов установок, используемых в зависимости от сферы применения:

  • для обработки пластмасс и шин;
  • для уничтожения продуктов деревообрабатывающей промышленности;
  • для пиролиза пищевых и других типов органических отходов.

Вторичные продукты

В процессе переработки получается следующее:

  • масло;
  • газ для тепловой и электрической промышленности;
  • топливо для дизельных двигателей;
  • древесный уголь.

Эти продукты задействуются во многих сферах, являясь отличным источником энергии. Но практике они не всегда получаются. Все зависит от условий, создаваемых в камерах сгорания.

Плюсы пиролиза

По сравнению со сжиганием мусора, пиролиз имеет серьезные преимущества. Главный фактор тот, что в окружающую среду не поступают продукты горения, не происходит загрязнение природы, не наносится вред здоровью людей.

Второй момент — сырьем служат твердые бытовые отходы. При этом важно, что таким способом перерабатывается мусор, который сложно утилизировать другими методами, например, автомобильные шины.

Продукты, получаемые в результате пиролиза, не содержат в себе агрессивных веществ. Их легко складировать даже под землей. Материалов образуется меньше, чем при обычном сжигании. Тяжелые металлы уходят в золу, а не восстанавливаются.

Такой способ утилизации практически безотходный, создающий цикличный механизм переработки твердых бытовых отходов. В конце процесса получают продукты, состав которых зависит от применяемого сырья и вида пиролиза.

пиролиз тбо плюсы и минусы

Схема установки для пиролиза резиновой крошки

Описание процесса

Прежде всего, пиролиз это термический распад соединений неорганического и органического происхождения. От обыкновенного сжигания, химический процесс пиролиза отличается ограниченным количеством кислорода, что позволяет продуктам, попавшим в камеру установки, разложиться на отдельные составляющие.

Процесс относится к безотходным, либо малоотходным методам утилизации. Помимо ТБО, позволяет перерабатывать нефтепродукты, загрязненную почву, газ и др.

Как было упомянуто выше, бескислородное разложение веществ имеет два направления: сбор вторсырья и обезвреживание бытовых отходов. Первое направление особенно востребовано, ведь оно позволяет получить продукты нефтехимического происхождения, которых в природе осталось ограниченное количество.

Виды пиролиза

Минусы пиролиза

К недостаткам пиролиза относят:

  • сложность печей;
  • дороговизну оборудования;
  • необходимость большого количества работников.

Список преимуществ перевешивает возможные недостатки метода.

Подробности о вывозе среднего количества утиля на одно физическое лицо можно узнать в статье Норматив вывоза ТБО на 1 человека.

Про общероссийский классификатор продукции по видам экономической деятельности, о том, как выбирают правильные коды, читайте статью:

О плотности твердых коммунальных отходов, влияющей на пространство для утилизации ТБО, узнавайте здесь.

Виды пиролиза

Несмотря на то, что оборудование для пиролиза дорогостоящее, а подготовка кадров также стоит денег, многие предприниматели рассматривают этот вид работ в качестве идеи для бизнеса.

Причины такой заинтересованности просты:

  • метод эффективен из-за использования вторсырья и практически безотходен;
  • вносится серьезный вклад в дело защиты окружающей природы;
  • не испытывают дискомфорта жители территорий, прилегающих к перерабатывающему заводу.

Метод пиролиза появился еще в XIX веке. С тех пор он постоянно развивается. Энтузиасты искали все новые способы для разложения мусора.

При этом преследовались следующие цели:

  1. Сохранение окружающей среды.
  2. Создание возможностей для накопления продуктов пиролиза.
  3. Уменьшение расходов на переработку.
  4. Получение прибыли от процессов переработки мусора.

В результате исследований появилось два основных метода переработки: сухой и окислительный.

Для увеличения картинки нажмите на нее

Литература

  • Мухина Т. Н.
    Пиролиз углеводородного сырья [Текст] / Т. Н. Мухина, Н. Л. Барабанов, С. Е. Бабаш — М.: Химия, 1987. — 240 с.
  • Nakamura D. N.
    Global ethylene capacity increases slightly in 2006 [Ежегодный отчет] / D. N. Nakamura // Oil and Gas Journal. — 2007. — v. 105. — № 27.
  • Кластер, зубы, хвосты / О. Ашпина, П. Степаненко // The Chemical Journal. — 2011. — май. — с.26—33.

Утверждения, не подкреплённые источниками, могут быть поставлены под сомнение и удалены. Вы можете улучшить статью, внеся более точные указания на источники.

Сухой метод пиролиза

Главный принцип способа — тщательное сохранение невосполнимых природных ресурсов.

С помощью этого метода:

  • получают топливо;
  • обезвреживают вторсырье;
  • получают химические вещества, используемые в промышленности.
Читайте так же:
Установка системы вентиляции в пластиковые окна

Работы ведут в диапазоне температур:

  • низкие;
  • средние;
  • высокие.

Процесс, протекающий при температуре от 450 до 550 градусов, называется низкотемпературным. При этом получают большое количество полукоксов, а также некоторое количество пиролизного газа.

Также на выходе получают смолы, идущие впоследствии на производство каучука. Коксы же используют в качестве топлива для бытовых и промышленных нужд.

Если температуру настраивают в режиме 800 градусов, то это будет среднетемпературный пиролиз. При таком варианте выделяется гораздо большее количество газа, меньше кокса и жидких смол, чем при низкотемпературном методе.

Смотрите видео: Установка непрерывного пиролиза отходов

Содержание

  • 1 Пиролиз углеводородов 1.1 Введение
  • 1.2 Условия проведения пиролиза и химические реакции
    3.1 Технологическое оформление

Высокотемпературный пиролиз ТБО

Самым эффективным и экологически безопасным способом переработки ТБО остается высокотемпературный пиролиз.

При этом получают большой объем пиролизного газа, шлаки и продукты, которые с успехом применяются в промышленности и производстве.

Немаловажным достоинством метода является возможность переработки бытовых отходов без предварительной сортировки, обработки и сушки.

Проводится процесс высокотемпературного пиролиза по следующему алгоритму:

  1. Путем индукционного сепарирования из поступившего на завод мусора отбирают крупногабаритные предметы.
  2. Подготовленное утильсырье перерабатывают в газофикаторе и получают пиролизный газ. При этом выделяются побочные химические вещества: хлор, фтор и азот.
  3. Очистка синтез-газа до безопасного для экологии состояния и увеличения его энергоемкости.
  4. Охлаждение пиролизного газа и его отправка в скруббер, где он очищается от примесей — соединений серы, фтора, хлора и цианидов щелочными растворами.
  5. Сжигание уже чистого синтез-газа в особых котлах-утилизаторах. При этом получают электроэнергию, пар или горячую воду.

Высокотемпературный пиролиз на данном этапе остается самым перспективным направлением утилизации мусора. При этом достигаются цели экологической безопасности и получения полезной вторичной продукции.

Газификация при воздействии высоких температур (от 850 до 1450 градусов) позволяет перерабатывать любые ТБО без сортировки, сушки и предварительной обработки.

Схема переработки изношенной авторезины методом пиролиза. Для увеличения картинки нажмите на нее

Какие отходы можно перерабатывать

Пиролиз — это процедура, которая имеет особый порядок проведения. Она требует предварительного изучения. В противном случае могут возникнуть проблемы с законодательством.

Задумываясь о проблемах экологии, важно не только сортировать, но и уменьшать потребление.

Есть органические и неорганические отходы. Обрабатывать таким способом разрешается только первые.

К органическим относятся следующие типы мусорных отложений:

  • Компостируемые. Это картон, опилки, ветки, пластмассовые и кожаные изделия, различные изделия типа проводов и пр.
  • Некомпостируемые. Это вещества с повышенной вязкостью или кремообразной структурой, одежда, кожаные и резиновые изделия, земля с наличием горючих компонентов в составе.

Продукты пиролиза ТБО

Продуктами пиролиза различных составляющих мусора являются:

  • при пиролизе полимерных материалов на выходе получаются мазут, газ и зола. Из мазута впоследствии с помощью сложных технологий вырабатывают синтетическое топливо, которое после очистки применимо для работы двигателей внутреннего сгорания. Золу упаковывают в брикеты и применяют, как топливо;
  • автомобильные покрышки утилизируются с получением газа, технического углерода и синтетической нефти. Синтетическую нефть очищают и получают замену природным нефтепродуктам. Технический углерод широко применяется в лакокрасочной промышленности, где его используют в качестве пигмента. Также он идет в ход при производстве резины и некоторых стройматериалов.

С помощью пиролиза есть возможность значительно сократить накопление ТБО на планете.

Сжигание и пиролиз твердых бытовых отходов

Опыт показывает, что для крупных городов с населением более 0,5 млн. жителей целесообразнее всего использовать термические методы обезвреживания ТБО.

Термические методы переработки и утилизации ТБО можно подразделить на три способа:

слоевое сжигание исходных (неподготовленных) отходов в мусоросжигательных котлоагрегатах (МСК);

слоевое или камерное сжигание специально подготовленных отходов (освобожденных от балластных фракций) в энергетических котлах совместно с природным топливом или в цементных печах;

пиролиз отходов, прошедших предварительную подготовку или без нее.

Несмотря на разнородность состава твердых бытовых отходов, их можно рассматривать как низкосортное топливо (тонна отходов дает при сжигании 1000—1200Гкал тепла). Термическая переработка ТБО не только их обезвреживает, но и позволяет получать тепловую и электрическую энергию, а также извлекать имеющийся в них черный металлолом. При сжигании отходов процесс можно полностью автоматизировать, а следовательно, и резко сократить обслуживающий персонал, сведя его обязанности до чисто управленческих функций. Это особенно важно, если учесть, что персоналу приходится иметь дело с таким антисанитарным материалом, как ТБО.

Слоевое сжигание ТБО в котлоагрегатах. При данном способе обезвреживания сжигаются все поступающие на завод отходы без какой-либо предварительной подготовки или обработки. Метод слоевого сжигания исходных отходов наиболее распространен и изучен. Однако при сжигании выделяется большое количество загрязняющих веществ, поэтому все современные мусоросжигательные заводы оборудованы высокоэффективными устройствами для улавливания твердых и газообразных загрязняющих веществ, стоимость их достигает 30% кап. затрат на строительство МСЗ.

Первая мусоросжигательная установка общей производительностью 9т/ч введена в эксплуатацию в Москве в 1972 году. Она предназначалась для сжигания остатков после компостирования на мусороперерабатывающем заводе. Мусоросжигательный цех находился в одном здании с остальными цехами завода, который в связи с несовершенством технологического процесса и получаемого компоста, а также из-за отсутствия потребителя на этот продукт в 1985 году был закрыт.

Первый отечественный мусоросжигательный завод был построен в Москве (спецзавод №2). Режим работы завода — круглосуточный, без выходных дней. Тепло, получаемое от сжигания отходов, используется в городской системе теплоснабжения.

Институт «Гипрокоммунэнерго» спроектировал для Владивостока МСЗ, оборудованный МСК Брненского машиностроительного завода (ЧСФР) с горизонтальной переталкивающей колосниковой решеткой. На заводе смонтированы три агрегата, сжигающие в час в совокупности 18 т отходов.

Установка подобной конструкции спроектирована и в Тбилиси для ликвидации некомпостируемой части отходов. В отличие от Владивостокской здесь не. устройства для утилизации тепла уходящих газов. Ее производительность составляет 8т/ч.

В 1973 году предприятие «ЧКД—Дукла» (ЧСФР) приобрело у фирмы «Дойче — Бабкок» (ФРГ) лицензию на изготовление МСК с валковой колосниковой решеткой. По внешнеторговым связям котлы, выпускаемые этим предприятием, приобретены для ряда городов нашей страны.

В 1980 году Кусинский машиностроительный завод и ПО «Сибэнергомаш» по техническому заданию «Харьковкоммунэнерго», ЦКТИ, АКХ и «Гипрокоммунэнерго» приступили к разработке отечественного МСК с валковой колосниковой решеткой производительностью 15 т/ч сжигаемых отходов. Котлоагрегат производительностью 3 т/ч Бийского котельного и Кусинского машиностроительного заводов применен на Владимирском экспериментальном МСЗ. В котлоагрегате использованы верхний и нижний барабаны котла типа ДКВР-10/13 с внесением минимально необходимых изменений в конфигурацию их трубной части. Котел принят государственной комиссией для повторного применения.

Читайте так же:
Установка повысительного насоса в систему отопления

В 1984 году введен в эксплуатацию в Москве самый крупный отечественный мусоросжигательный спец. завод № 3, основное технологическое оборудование для которого поставила фирма «Волунд» (Дания). Производительность каждого из четырех его агрегатов составляет 12,5т сжигаемых отходов в час. Отличительная особенность агрегата — дожигательный барабан, установленный за каскадом наклоннопереталкивающих колосниковых решеток.

Опыт эксплуатации отечественных заводов позволил выявить ряд недостатков, влияющих на надежность работы основного технологического оборудования и на состояние окружающей среды. Для устранения обнаруженных недостатков необходимо:

обеспечить раздельный сбор золы и шлака;

предусмотреть установку резервных транспортеров для удаления золошлаковых отходов;

повысить степень извлечения лома черных металлов из шлака;

обеспечить очистку извлеченного металлолома от золошлаковых загрязнений;

предусмотреть дополнительное оборудование для пакетирования извлеченного лома черных металлов;

разработать, изготовить и установить технологическую линию по подготовке шлака для вторичного использования;

установить дробилку для крупногабаритных отходов.

Удешевление сжигания ТБО.

Снижение затрат на транспортировку отходов диктуют необходимость строительства двух мусоросжигательных заводов производительностью по 200тыс.т отходов в год. Это наиболее рациональный вариант.

Следует рассмотреть возможность создания безотходного производства с использованием шлака и золы для дорожного строительства и стройиндустрии, обеспечив при этом извлечение остатков черного и цветного металлолома. Необходимо также предусмотреть в схеме завода двухступенчатую систему очистки выбросов, отвечающую самым жестким нормативам и требованиям. Аппараты очистки от летучей золы должны иметь эффективность не ниже 99%. Химическая очистка от газообразных загрязняющих веществ должна улавливать такие выбросы, как S0 2 , NO 2 , HCI и HF. Конструкция котлоагрегата должна обеспечивать полное дожигание органических и полиароматических веществ, образующихся в процессе горения отходов.

Пиролизные установки. В Академии коммунального хозяйства разработан проект установки и нестандартное оборудование для высокотемпературного пиролиза производительностью 800кг/ч перерабатываемых ТБО. Основные узлы установки: реактор, воздухоподогреватель, охладитель газов, система газоочистки, система автоматического регулирования, газоходы и воздуховоды, вентилятор и дымосос. Первая в стране опытно-промышленная установка пиролиза некомпостируемых частей бытовых отходов (НБО) мощностью 30 тыс. т в год по перерабатываемому сырью, входящая в состав Ленинградского завода МПБО, проектировалась институтом «Гипрокоммунстрой» и «ЛенНИИГипрохим» на основании технологического регламента разработанного «ВНИИНефтехим». В комплекс установки входят три основных корпуса: подготовительный, приемный и дробильный.

В результате процесса пиролиза из сырья образуются парогазовая смесь и твердый углеродистый остаток (пирокарбон). Парогазовая смесь очищается от пыли в циклоне и далее проходит последовательно через конденсатор, в котором газовая фаза отделяется от жидких продуктов пиролиза (смеси смолы и воды). Газообразные продукты направляются вентилятором на сжигание в специальную топку.

Пирокарбон из пиролизного барабана через шлюзовой питатель выгружается на конвейер с погружными скребками и охлаждающей водяной рубашкой под днищем. Расфасованный в бумажные мешки пирокарбон отправляется на склад готовой продукции.

Таковы на сегодняшний день термические методы обработки твердых бытовых отходов.

Мусоросжигание

Мусоросжигание (также инсинерация) — процесс термической обработки мусора, заключающийся в сжигании содержащихся в нём органических материалов. Производится как индивидуально, так и в промышленных масштабах — на мусоросжигательных заводах, которые могут быть скомбинированы с тепловыми электростанциями. Чаще всего под мусоросжиганием подразумевается именно промышленное мусоросжигание твёрдых коммунальных отходов [1] [2] [3] [4] .

Мусоросжигание позволяет сократить массу первоначальных отходов на 70—85%, а объём — на 90—95%, а кроме того — обезвредить в них органические соединения. Теплота сгорания мусора используется также в энергетических целях, для выработки тепловой и электроэнергии, таким образом мусоросжигание может частично покрывать энергетические потребности агломераций [3] [4] .

Наиболее развито мусоросжигание в развитых странах с высокой плотностью населения, где земля является ценным ресурсом и мест для мусорных полигонов недостаточно (Дания, Япония). В развитых странах с низкой плотностью населения (Швеция, Финляндия) оно чуть менее распространено [1] [5] .

Содержание

История и современность [ править | править код ]

До Промышленной революции XVIII-XIX веков люди использовали в быту предметы природного происхождения, которые можно было сжечь или оставить перегнивать. Бытовая утилизация мусора существует на протяжении всей истории человечества, часто деревянный мусор использовали в качестве дров. Ситуация стала изменяться в период индустриализации, когда в странах Европы и Северной Америки в быту стали распространяться изделия из синтетических материалов, не подверженных естественному разложению, объёмы их производства и потребления росли, и человечество стало производить всё больше мусора [1] [6] .

Промышленное мусоросжигание появилось в Великобритании во второй половине XIX века, когда при мануфактурах строились мусоросжигательные печи. В 1874 году в Ноттингеме был построен первый в мире мусоросжигательный завод, а затем там же была построена первая паровая установка, где мусор использовался в качестве топлива — так промышленное мусоросжигание впервые нашло энергетическое применение. Мусор в то время сжигался общей массой, без сортировки, а в печах и на заводах ещё не существовало систем фильтрации. Британские переселенцы перенесли мусоросжигание и в Америку, и в 1880 году в Нью-Йорке был построен первый в США мусоросжигательный завод. Однако вплоть до 1960-х годов мусоросжигание в США практиковалось в основном на автономных установках, а специализированные заводы были мало распространены. Кроме того, в конце XIX века в американских городах строились мусоросжигательные установки в многоквартирных домах, которые использовались и для их отопления. Однако вскоре от использования их пришлось отказаться, поскольку трубы в них были недостаточно герметичными, и дымовые газы проникали в жилые помещения [1] [6] .

В континентальной Европе первой страной, внедрившей у себя промышленное мусоросжигание, стала Франция. Первый французский мусоросжигательный завод был построен рядом с Парижем в 1893 году, а в 1896 году в Сент-Уэне заработал первый в мире мусоросжигательный завод с измельчающей машиной. В 1930 году в Швейцарии была разработана печь с колосниковой решёткой для слоевого сжигания мусора — это была принципиально новая технология мусоросжигания, которая позволила отказаться от использования мазута и каменного угля в качестве топлива для равномерного распределения температуры в печи, что значительно снизило себестоимость мусоросжигания, а также повысило его эффективность. В 1933 году в Дордрехте в Нидерландах открылась первая в мире тепловая электростанция, работающая на энергии мусоросжигания [6] .

Читайте так же:
Варианты установки циркуляционного насоса в системе отопления

В 1950-е годы стал применяться метод пиролиза твёрдых бытовых отходов. В 1970-е годы мусоросжигание получило новый виток развития на волне мирового энергетического кризиса, когда значительно выросли цены на нефть. Мусор в то время стал всё чаще рассматриваться в качестве топлива для производства тепловой и электроэнергии. Несколько ранее, в 1972 году, заработали первые мусоросжигательные заводы в СССР [6] .

Распространённость мусоросжигания значительно различается между странами, являясь очень высоким в ряде развитых стран (преимущественно в Северной и Западной Европе). Количество мусоросжигательных заводов в мире приближается к 2 тысячам, из которых более 400 расположено в Европе. Мировыми лидерами в мусоросжигании являются Дания и Швейцария, где сжиганию подвергается около 80% твёрдых бытовых отходов (в Швейцарии по состоянию на начало 2010-х годов функционировало 37 мусоросжигательных заводов, то есть в среднем по одному заводу на каждые 200 тысяч жителей). Несколько меньший уровень сжигания отходов (около 70%) — в Японии. В Швеции, Финляндии и Бельгии сжигается порядка 50—60% отходов (а Швеция и Финляндия, наряду со Швейцарией, находятся в числе лидеров по энергетическому использованию мусоросжигания); в Германии, Австрии, Франции и Италии этот показатель составляет около 20—40% (Франция при этом является лидером по количеству мусоросжигательных заводов на территории одной страны — там их около 300). Среди стран Европейского союза (где в среднем уровень сжигания мусора составляет 25%) наименее развито мусоросжигание в Румынии и Болгарии, где сжигается только 1% отходов. В странах, где зародилось мусоросжигание, — Великобритании и США, его уровень также относительно невысок: в обеих этих странах сжиганию подвергается около 10% отходов [1] [5] [7] [8] .

В России мусоросжигание пока что не получило широкого развития. На вторую половину 2010-х уровень сжигания отходов в стране составляет около 2,3%. В России по состоянию на 2019 год насчитывает только 10 мусоросжигательных заводов (из которых три расположено в Москве), но при этом планируется существенное увеличение их количества, в том числе, в рамках стартовавшего в конце 2010-х годов проекта «Энергия из отходов» компании «РТ-Инвест» в сотрудничестве с японско-швейцарской компанией «Hitachi Zosen INOVA». Низким в наше время остаётся уровень развития мусоросжигания и в других странах бывшего СССР. К примеру, на Украине действует только один мусоросжигательный завод в Киеве, а в Белоруссии и Казахстане нет ни одного, но в обеих странах планируется их строительство [1] [9] [10] [11] [12] [13] [14] .

Технологии и производственный процесс [ править | править код ]

Мусоросжигание существует как на бытовом уровне, когда люди самостоятельно сжигают накопившийся у них мусор (в печах или кострах), так и в промышленных масштабах. Существует несколько технологий промышленного мусоросжигания, которые различаются по типу печей, температуре горения, а также химическому составу среды, в которой горение отходов происходит. Два основных вида мусоросжигания — собственно сжигание (применяется в большинстве случаев) и пиролиз (высоко- и низкотемпературный), при котором вырабатывается топливо. Как правило, сжиганию подвергается мусор, отсортированный на гомогенные фракции (что важно, так как состав мусора определяет оптимальную технологию). Сортировка может осуществляться как в момент сбора мусора (раздельный сбор), так и после его поставки на мусоросжигательный завод [2] [15] [3] .

Слоевое сжигание [ править | править код ]

Главная особенность слоевого сжигания — распределение отходов в топке печи равномерным слоем, на который подаются горячие воздушные потоки, что обеспечивает равномерного прогорания. Слой мусора загружается в камеру сгорания и располагается на колосниковой или воздухораспределительной решётке. Как правило, камера сгорания имеет форму параллелепипеда. При использовании колосниковой решётки она устанавливается под наклоном, при котором колосники располагаются каскадом наподобие черепичной крыши. В вертикальной плоскости между колосниками имеются щели или сопла, через которые подаётся воздух. В зависимости от химического состава мусора, сжигание может осуществляться при температурах от 800 до 1500⁰C [3] [15] [16] [4] .

Чаще всего применяется слоевое сжигание на подвижной наклонной колосниковой решётке. Эта технология позволяет сжигать любые виды отходов, кроме пылевидных. Мусор загружается на самый верхний колосник, затем при помощи подвижных колосников он перемещается вниз. Воздух в камеру сгорания подаётся в одном направлении с движением мусора, также способствуя его перемещению. На самом нижнем колоснике процесс сжигания завершается, а зола и шлак через пазы просыпаются в специальный резервуар, охлаждаемый водой, после чего утилизируются. Одна камера с подвижной колосниковой решёткой способна перерабатывать около 35 тонн отходов в час [3] [16] .

При использовании неподвижной колосниковой решётки её установка, подача в камеру сгорания мусора и воздуха почти аналогичны камерам с подвижной решёткой. Однако мусор перемещается сверху решётки вниз за счёт подачи потоков воздуха, что замедляет процесс и повышает энергоёмкость технологии. В ряде случаев это частично компенсируется установкой прижимного экрана из огнеупорного материала, который направляет пламя в противоток движению мусора и обеспечивает более полное сгорание [3] [16] .

Также при мусоросжигании применяется технология кипящего слоя. Вместо колосников в камере сгорания устанавливается воздухораспределительная решётка с форсунками, через которые под давлением подаётся воздух. Над ними ещё до подачи мусора в камеру загружается слой сыпучего абсорбента, обладающего высокой теплопроводностью (обычно используются песок или доломитовая крошка). Абсорбент при подаче воздуха создаёт инертный псевдоожиженный слой, с которым перемешивается мусор, в результате чего повышается интенсивность теплообмена, а также поглощение абсорбентом ряда токсичных продуктов горения отходов, что позволяет значительно сократить количество выбросов. Недостатком технологии кипящего слоя является её непригодность для сжигания смешанной массы отходов [3] [16] [2] [15] .

Читайте так же:
Установка дополнительной помпы в систему отопления

Пиролиз [ править | править код ]

При сжигании токсичного мусора, выделяющего большое количество токсичных выбросов, часто применяется пиролиз, то есть термическое разложение отходов во вращающейся барабанной печи в бескислородной среде или при низком содержании кислорода. Пиролиз применяют для утилизации токсичных отходов: некоторых видов пластмасс, резины, ряда промышленных отходов [3] [2] [15] [4] .

Более распространена технология низкотемпературного пиролиза, при котором разложение отходов происходит при температурах ниже 900⁰C (как правило, 400—600⁰C). Пиролизная печь, в которой перерабатываются отходы, состоит из двух камер сгорания: нижняя камера сжигания отходов, и верхняя камера дожигания генераторных газов. Перед загрузкой в печь масса отходов подвергается измельчению и затем помещается в нижнюю камеру, где сгорает в бескислородной среде. Газы, образующиеся при разложении, через инжекторное устройство направляются в камеру дожигания, куда в ограниченных количествах подаётся кислород, а также катализирующие газы. Там происходит дальнейшее разложение газов, в результате чего содержание токсичных веществ в выбросах при пиролизе примерно в 7 раз ниже предельно допустимых концентраций. Печь вращается со скоростью от 0,05 до 2 оборотов в минуту, способствуя равномерному прогоранию отходов. Таким образом, эффективность технологии пиролиза заключается в сокращении количества вредных выбросов и уничтожении биологически активных веществ, что позволяет в дальнейшем складировать пиролизные отходы без большого вреда для окружающей среды. Помимо этого, твёрдый осадок, а также жидкости и газы, образующиеся в результате пиролиза отходов, могут использоваться в качестве сырья в химической промышленности или топлива [3] [2] [15] [17] [18] [19] .

Технология газификации отходов предполагает высокотемпературный пиролиз, проводимый при температурах 1000—1200⁰C. Основная особенность газификации отходов заключается в получении в результате процесса синтез-газа (смеси водорода с монооксидом углерода), используемого в энергетике, а также побочных химических соединений, содержащих фтор, хлор, азот, и используемых в химической промышленности [2] [15] [3] [17] [20] .

Плазменная технология [ править | править код ]

Для утилизации высокотоксичных отходов, к которым относятся преимущественно медицинские отходы (в особенности, использованные инструменты из инфекционных отделений больниц) и боеприпасы, также применяется плазменная технология, при которой отходы сжигаются в электродуговых печах при температуре от 1300⁰C до 4000⁰C, получаемой за счёт энергии электрической дуги в присутствии водяного пара. Степень разложения отходов при плазменной технологии близка к полной, что делает её наиболее эффективной и экологически безопасной. Однако из-за высокой энергоёмкости и значительных эксплуатационных расходов на использование электродуговых печей эта технология используется для обработки специального мусора [3] [21] .

Установки пиролиза твердых бытовых отходов

Органические отходы могут стать дешевым видом топлива. Самый простой способ — это получение газа метана непосредственно на местах захоронения с дальнейшей его транспортировкой к потребителям или на ближайшую тепло-энергетическую установку с целью получения тепла и электроэнергии.

Однако у этого способа есть серьезный недостаток: пластиковые органические вещества менее подвержены разложению по сравнению с пищевыми отходами или органическими веществами природного происхождения. Отдача будет низкой, потребуется сортировка и удаление пластиковых отходов. Это приведет к удорожанию и не решит самой проблемы утилизации. То есть требуется включить в энергооборот и пластиковые отходы.

Можно сжигать ТБО в специальных печах на колосниковых решетках, а полученную тепловую энергию превращать в электрическую. Но при сжигании пластиковых отходов образуются высокотоксичные диоксины на основе входящих в состав полимеров галогенов: хлора, брома, фтора, а также полиароматические углеводороды (ПАУ). Конечно, нужны системы фильтрации отходящих газов, но стоимость лучших из них на порядок выше стоимости самих мусоросжигательных установок, но даже они не обеспечат нужной чистоты.

Технологии по сжиганию ТБО в циркулирующем псевдосжиженном слое не обеспечивают обезвреживания диоксинов на твердом несгораемом остатке, а также на летучей золе в отходящих газах. Из мирового опыта утилизации ТБО термическим способом известны условия образования диоксинов, это:

-низкая температура горения 600-900 ºС, приходящаяся на пик интенсивности синтеза;
-избыточное содержание кислорода воздуха;
-наличие в отходящих газах частиц углерода, золы и пыли, способствующие повторному синтезу диоксинов.

Только высокая температура, свыше 1250 ºС и выдержка более 2 секунд способствует разрушению диоксинов. Такие условия невозможно создать в мусоросжигательных установках.

В установках высокотемпературного пиролиза можно получить температуру, близкую к разрушению диоксинов, но не исключен момент повторного их синтеза на пыли и несгоревших частицах углерода в потоке отходящих газов, где температура снижается
до 300 ºС.

Применение в технологии утилизации низкотемпературной плазмы позволяет достичь высокой степени обезвреживания токсичных отходов. Плазменный нагрев ТБО при недостатке кислорода приводит к образованию водорода и окиси углерода, степень разложения в зоне плазмы токсичных веществ, таких как полихлорбифенилы, хлор- и фторсодержащие пестициды, полиароматические углеводороды достигает 99,9998%
с образованием СО/2, Н2О, HCL, HF. (1)

Плазменная технология утилизации ТБО позволяет создать в зоне термического разложения температуру свыше 1300 ºС, что вполне достаточно для безопасной утилизации отходов, но экономическая составляющая очень высока, так на 1 кг отходов приходится 2-3 кВт затрат электроэнергии и это без учета амортизации и стоимости сервисного обслуживания наукоемкой установки. Данная технология существует в единичных разработках, сложна в реализации и затратна. Проведя анализ существующих технологий, приходим к выводу, что для безопасной утилизации ТБО требуется создание оборудования, которое отвечало бы следующим условиям:

— бескислородное термическое разложение органического вещества;
— температура не менее 900 ºС в зоне разложения;
— пропорциональное и равномерное смешивание компонентов горения;
— время пребывания газов в горячей зоне сжигателя не менее 2 секунд.

Такую установку — газогенераторное отопительное устройство, работающее как на древесных, растительных отходах, опилках, так и на ТБО — мы создали, испытали, и результаты испытания предлагаем вам. Предлагаемое нами устройство, установка утилизации ТБО, работает по принципу высокотемпературного пиролиза органического вещества, с дальнейшим сжиганием его жидких и газообразных продуктов в зоне канала горения, ТБО. При этом конструктивное разделение зоны пиролиза ТБО и канала горения исключает поступление углеродных и пылевых частиц в поток отходящих газов, предотвращая повторный синтез диоксинов. Такое конструкционое решение позволяет выполнить необходимые условия, снижающие уровень образования высокотоксичных веществ:

Читайте так же:
Установка сигнализации в квартиру отзывы

-высокую температуру термического разложения ТБО;
— ограничение притока кислорода воздуха;
-равномерное смешивание компонентов генераторного газа и кислорода воздуха;
-фильтрацию углеродных и пылевых частиц.

Время прохождения газа продуктов горения при температуре свыше 900 ºС зависит от конструкции выходного устройства и составляет свыше 2 секунд. Для проведения экспериментов была применена газогенераторная установка, разработанная ранее для утилизации древесных отходов. Объем топливной камеры заполнили древесными опилками и бытовыми отходами: пластиковой одноразовой посудой, бутылками, тэтрапак- упаковкой в соотношении 1:5. Общий объем загрузки составил 35 дм³ массой 6 кг.

Утилизация проводилась без применения принудительного воздушного дутья и химических веществ, активизирующих процесс горения. По окончании утилизации был определен несгораемый остаток 650 г золы и небольшое количество окисной пленки алюминия, отходы защитной пленки пакетов тэтрапак. Эксперимент показал отсутствие в выхлопе трубы частиц твердого углерода, шел чистый прозрачный газ без явных признаков дыма (аэрозоли сажи), что говорит о полном сгорании углеводородов и получении очень высокой температуры в реакторе камеры горения. Для определения достигнутой температуры в реакторе камеры перед экспериментом были помещены в разных точках его объема индикаторы, медные

проволочки, в центре и по внутренней стороне стенок. По завершению эксперимента было обнаружено: капельки меди по месту установки индикатора в центре реактора и частичный расплав индикаторных проволочек по периферии. Точка плавления меди известна, 1083 ºС (2).

По сравнению с аналогичным сжиганием древесных опилок при том же объеме загружаемого топлива температура выходных газов на выходе дымовой трубы была выше на 140-150 °С и составила около 480°С. Время утилизации пластиковых отходов 3 часа и 25 минут, сократилось по сравнению с 4 ч 15 мин при сжигании опилок. Результаты испытаний сведены в таблицу сравнительного анализа.

Таблица сравнительного анализа

Вывод: при сжигании смеси опилок и пластикового мусора произошло сокращение времени горения на 25%, это свидетельствует о возросшей мощности и температуре в реакторе.

Полученные данные в ходе эксперимента говорят о возможности создания на основе наших изобретений: стационарных, и мобильных установок по утилизации ТБО.

А. Смагин,
ведущий инженер по разработке теплового оборудования.
В. Гусева,
инженер-эколог

Пиролизная установка для переработки ТБО

Группа компаний «Мегалион» с 2010 года производит оборудование для мусоросортировочных линий.

Анализ работы в сфере обращения с отходами потребления и производства давно показал назревающую проблему с истощением ресурсов полигонов ТБО, особенно в густонаселенных районах страны. Главной причиной этого является отсутствие предложений на внедрение в мусороперерабатывающую отрасль рентабельных технологий для глубокой переработки «хвостов» сортировки ТБО, которые бы значительно снизили нагрузки на полигоны.

Группой компаний «Мегалион» были проведены научно-исследовательские и опытно-конструкторские работы по совершенствованию известной технологии низкотемпературного пиролиза применительно к переработке ТБО. В результате разработан и запатентован способ пиролизной утилизации твердых углеродсодержащих отходов и мусороперерабатывающий комплекс для его осуществления.

Сущность предлагаемого способа заключается в термическом воздействии на перерабатываемые отходы без доступа кислорода по заданной температурной программе до полного разложения углеродсодержащих веществ на газовую и твердую фазы с получением в одном технологическом цикле жидких топливных фракций и горючего газа.

Цена на пиролизные установки для переработки ТБО зависит от проекта и рассчитывается индивидуально. Чтобы купить оборудование – отправьте форму заявки или позвоните по телефону 8-800-550-70-71 – звонок бесплатный.

Вид перерабатываемого сырья"хвосты" сортировки ТКО
Исходная влажность сырьяне более 50 %
Максимальный размер частиц сырья150 мм
Производительность по переработке сырья8 — 10 т/сут
Режим работыцикличный
Время производственного цикла24 ч
Рабочее давление в реакторене более 0,05 МПа
Максимальная температура внутри реактора450 °С
Количество ступеней мокрой очистки парогазовне менее 3-х
Количество получаемых жидких углеводородных фракций (по температурным диапазонам кипения)не менее 2
Объем получаемых жидких углеводородных фракций*до 1,5 м3/сут
Объем получаемого пиролизного газа*до 4000 нм3/сут
Объем получаемого углеродистого остатка*до 1,2 м3/сут
Объем сточной производственной воды*до 5 м3/сут

* Примечание: указанные параметры зависят от морфологического состава и влажности ТКО

В информационно-техническом справочнике по наилучшим доступным технологиям (ИТС 9-2015. С. 56,57, 129) отмечается, что барабанные вращающиеся печи широко используются за рубежом для сжигания твердых и пастообразных промышленных, бытовых и медицинских отходов, а также обезвоженных осадков сточных вод. В технологическом отношении барабанные вращающиеся печи являются наиболее универсальными термическими реакторами для переработки крупнокусковых отходов переменного состава. Низкотемпературный сухой пиролиз при температуре 450-500 °C относится к одной из наилучших технологий в сфере обезвреживания твердых отходов термическим способом.

Данная технология применяется при работе пиролизной установки «КПУ Мегалион-НП-2», которая содержит два барабанных реактора, конвейерную линию для загрузки сырья в реакторы, блок конденсации парогазовой смеси, транспортировочную линию выгрузки углеродистого остатка в накопительный бункер, вентиляторную градирню.
В результате термохимической деструкции углеродсодержащего сырья во вращающемся реакторе при температурах 300-400 °С в бескислородной среде образуется парогазовая смесь (ПГС) и твердый углеродистый остаток. При охлаждении ПГС в блоке конденсации вначале выделяются жидкие топливные фракции, затем отделяется вода, и в конце получается горючий пиролизный газ. Вода является побочным продуктом, объем которой зависит от исходной влажности сырья.

При переработке твердых коммунальных отходов на мусоросортировочной линии отбираются балластные фракции размером до 70 мм (высоковлажные пищевые отходы, земля, уличный смет) неорганические материалы (металл, стекло, строительный мусор), хлорсодержащие ПВХ компоненты. «Хвосты» сортировки через дробилку подаются на конвейерную линию и далее — к загрузочному узлу реактора. К горелке реактора подводится газообразное или жидкое топливо. Нагрев сырья осуществляется путем передачи тепла через стенки труб внутреннего теплового контура реактора.
Для увеличения эффективности тепломассообмена веществ осуществляется постоянное ворошение сырья за счет вращения реактора. После стадии пиролиза, когда газообразование в реакторе прекращается, горячий углеродистый остаток выгружается из реактора закрытым способом.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector