Ayaklimat.ru

Климатическая техника
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

3. 5. Терморегулирующие вентили

3.5. Терморегулирующие вентили

Терморегулирующие вентили (ТРВ) предназначены для автоматического регулирования количества хладона, поступающего в испаритель в зависимости от перегрева его паров, выходящих из испарителя (перегрев — это разность между температурой кипения хладагентависпарителеитемпературойпаровнавыходеизнего). Процесс регулирования сопровождается дросселированием хладагента отдавленияконденсации(жидкийхладон) додавлениякипения, при котором хладон существует в жидком и парообразном состояниях. Для перехода хладона в парообразное состояние требуется подвод тепла извне — так называемая скрытая теплота парообразования. Эта теплота подводится в испарителе от циркулирующего воздуха и увеличивается (на 1 кг хладона) при понижении температуры испарения. Объем всасываемых паров хладона в течение часа практическипостояненидаженесколькоснижаетсяприуменьшениидавления всасывания из-за высокой текучести паров хладона. Вследствие этогодляполучениянизкихтемпературиспарениянеобходимоснижать количествохладона, поступающеговиспаритель. Спонижениемтемпературыиспаренияхолодопроизводительностьустановкиснижается, а с понижением температуры конденсации (более холодный хладон, поступающий к регулятору) возрастает. Поэтому терморегулирующий вентиль должен автоматически регулировать количество хладона, реагируя на температуру испарения и температуру паров на входе в компрессор.

ТРВ — регулятор прямого действия, т.е. регулятор без подвода энергии извне. Принцип работы ТРВ основан на использовании зависимости перегрева паров хладагента, выходящих из испарителя, от тепловой нагрузки на испаритель.

Если подавать определенное количество хладагента в испаритель, то при повышении тепловой нагрузки на него возрастает ин-

тенсивностькипенияхладагента и не вся теплопередающая поверхность будет активно участвовать в работе, а перегрев на выходе из испарителя увеличится.

Присниженииженагрузкина испаритель процесс кипения замедляется, пары хладагента перенасыщаются и может наступить«влажныйход» компрессо-

распоследующимегоповреждением, приэтомперегревнавыходеиз испарителя уменьшается.

На рис. 3.8 показана принципиальная схема работы ТРВ. Мембрана 4 терморегулирующего вентиля связана с клапаном

3, через который из жидкостного трубопровода 2 в испаритель 8 поступает хладагент. Сверху на мембрану действует давление наполнителятермочувствительнойсистемы, воспринимающейтемпературу перегретого пара на выходе из испарителя, через термобаллон 7 и капиллярную трубку 5 . Снизу на мембрану 4 действует давление испарения хладагента из уравнительной линии 6 и усилие регулировочной пружины 1. При отсутствии перегрева мембрана находитсявнормальномсостоянииисвязанныйснейклапанподдействием пружины 1 должен быть закрыт, в испаритель хладагент не поступает. Такое положение клапана должно соответствовать неработающему компрессору.

Приувеличенииперегревадавлениенаполнителятермочувствительнойсистемывозрастаетивоздействуетнамембрану, котораяпрогибаетсяи, преодолеваяпротиводавлениеиспаренияипружины, открывает клапандляпроходахладагентависпаритель. Воздействуянарегулировочнуюпружину, можноизменятьначалооткрытияклапана.

Таким образом, уменьшение перегрева паров хладагента приводит к понижению температуры и давления в термочувствительной системе, поэтомуклапанподнимаетсяиуменьшаетподачухладагентависпаритель, аувеличениеперегреваприводиткповышениютемпературы и давления термочувствительной системы, при этом клапан опускается, увеличивая поток хладагента в испаритель.

На холодильной установке FAL-056/7 установлен терморегулирующий вентиль 12ТРВ-10 (рис. 3.9), который состоит из трех частей: термосистемы, клапанного узла и узла регулировки (настройки). В термосистему, заполненную хладоном, входят термобаллон 15, капиллярная трубка 14 и головка вентиля 13 с мембраной. Термобаллон укреплен сверху на трубопроводе, выходящем из испарителя, иизолирован. Клапанныйузелсостоитизтолкателя 8, сальника 6, клапана 10. Клапанперекрываетседло 9, черезкотороедросселируется жидкий хладагент. Узел настройки состоит из регулировочной пружины 4 со стаканом 11, винта 13 настройки со втулкой 2 и штуцера 1, колпачка 12.

Вкорпусе 5 имеютсядваотверстиядляприсоединенияТРВ(впаивания) в жидкостной трубопровод перед распределителем жидкости испарителя и штуцер для подключения уравнительной линии.

Рис. 3.9. Терморегулирующий вентиль 12 ТРВ-10

Предельныйходклапана 3 определяетсявеличинойпрогибамембраны 7 , а начало открытия его — величиной сжатия регулировочной пружины 4, которую можно регулировать с помощью винта 3 настройки и давления хладона термосистемы на мембрану в зависимости от температуры перегрева.

Техническая характеристика терморегулирующего вентиля 12 ТРВ-10 приведена ниже (таблица 3.1)

Мембранный (хладон R12)

Номинальная производительность, кВт

Установленный перегрев при температуре

воздуха: на входе в испаритель, 20 °С и на

входе в конденсатор, 36 °С

Максимально допустимое внутреннее давле-

С обеих сторон фланцевые со-

Соединение на пайке для трубы

Соединение на пайке для трубы 12

Накидная гайка с ниппелем для

соединения на пайке трубы 6 × 1

При нормальной работе ТРВ и установившемся режиме работы холодильной установки разность температуры грузового помещения и температуры испарения составляет 8 — 12 °С; трубопровод у испарителя до места установки термобаллона покрывается инеем; всасывающий трубопровод у автоматического запорного вентиля должен бытьсухимилислегкаотпотевшим; обмерзание выходного соединительного трубопровода; хладон проходит через ТРВ с характерным шумом. Регулировка ТРВ осуществляется винтом 3 настройки после отворачивания колпачка 12 специальным ключом. Вращение винта 3 настройки по часовой стрелке — перегрев повышается, а против часовой — уменьшается.

На холодильных установках секций ВР применяются регуляторы 12ТРВ-12 и 12ТРВ-16 (первые две цифры — обозначение хладо

Читайте так же:
Регулировка температуры холодильника вестел

на R12, а последние указывают на номинальную холодопроизводительность). Холодопроизводительностьопределяетсяформойклапанадлятемпературыис- парения–15 °С, температурыконденсации 30 °С и наименьшем перегреве начала открытия клапана.

Устройство ТРВ приведено на рис. 3.10. СиловымэлементомТРВ

является герметически замкнутая Рис. 3.10. Устройство ТРВ термочувствительная система, со-

стоящаяизтермобаллона 9, капилляра 8, упругогоэлемента— сильфона 7 , головки вентиля 6 и наполнителя. Термобаллон заполняется активированным углем и углекислым газом при определенном давлении. При повышении температуры баллона адсорбция углекислого газа в угле снижается, давление в замкнутой системе возрастает. Если при этом давление паров хладагента, воспринимаемое уравнительной линией на выходе из испарителя 10, и сила сжатой пружины 2 меньше усилия, воспринимаемого сильфоном со стороны углекислого газа, то клапан 3 с помощью штоков 5 переместится на величину, пропорциональную перегреву. Количество хладагента, проходящее через вентиль, увеличивается, температура перегретых паров уменьшается, соответственно давление в термосистеме падает. Наличиелиниивнешнегоуравниванияустраняетвлияниегидравлического сопротивления испарителя и распределителя хладона по секциям испарителя 4 на величину перегрева начала открытия клапана, так как увеличение перегрева ухудшает работу испарителя и холодильной установки в целом. Однако для компрессора недопустима работа в режиме «влажного хода», при котором на линию всасывания попадает смесь жидкого и парообразного хладона, что вызывает гидравлические удары и кавитацию в цилиндрах компрессора. Поэтому важное значение имеет настройка перегрева начала открытия с помощью регулировочного винта 1. Нижний предел настройки перегрева в стандартных условиях допускается не более 1,5 °С, верхний предел — не менее 16 °С. Направление движения хладона через ТРВ и в системе показано стрелками.

На щите приборов смонтировано два вентиля (один рабочий, другой запасной). Рабочий диапазон температур от –20 до +50 °С.

На установке кондиционирования воздуха MAB-2 установлен ТРВ типа TEF-12.

Техническая характеристика терморегулирующего вентиля TEF-12 приведена ниже (табл. 3.2).

Перегрев (заводская регулировка)

4 °С при темп. на щупе 0 °С

Максимальная допустимая температура

Максимальное допустимое рабочее

2,2 МПа избыточное давление

Максимальное допустимое давление

2,8 МПа избыточное давление

Терморегулирующий вентиль подавать в испаритель только такое количество жидкого хладагента, которое испаряется за счет восприятия тепла от проходящего через испаритель воздуха.

Это достигается следующим образом: (рис. 3.11). Сторона входа 1 и сторона выхода 2 разделены между собой форсункой 3 и иглой тарелки вентиля 4 . Игла вентиля 4 соединена с сильфоном 5 путем нажимного штифта 6 .

Над мембраной 5 существует давление от сильфона 9 , установленногонавсасывающемтрубопроводе за испарителем.

Под сильфоном 5 имеется иззауравнительного трубопровода давление, равное давлению на выходе испарителя. Черезфорсунку 3 уменьшается давление жидкого хладагента. Испарение хладагента происходит за счет по-

глощения тепла от приточ-

Рис. 3.11. Схема терморегулирующего

охлаждаются. Наполнениещупасужается, давлениенадсильфоном уменьшается, нажимной штифт приподнимает иглу клапана и таким образом впрыскивается меньшее хладагента. При той же подаче тепла меньше количество хладагента испаряется быстрее и пар хладагента перегревается в последней секции испарителя. Трубопровода и щуп нагреваются, наполнение щупа расширяется.

Посредством регулировочного шпинделя 8 и регулировочной пружины 7 устанавливается определенное противодавление относительно давления щупа. Этим достигается то, что впрыскивается всегда немного меньше хладагента, чем могло бы испаряться в испарителе, причемпархладагентавпоследнейсекциииспарителянагревается ещё я покидает испаритель всегда в перегретом состояния. Для настройкитерморегулирующеговентилярегулировочныйшпиндель 8 необходимо поворачивать влево (против направления вращения часовой стрелки) до слышного щёлканья или до упора, а затем на 10±1 оборотоввправо(понаправлениювращениячасовойстрелки), у насадки для форсунки 3 это отвечает размеру для длины пружины

в 34 мм. Послеэтогоподходящимприборомдляизмерениятемпературынеобходимоизмеритьтемпературувсасывающеготрубопровода

в области термочувствительного элемента при работе установки в двухцилиндровом режиме (в месте измерения всасывающий трубопровод должен быть чистым до металлического блеска), причем одновременнонеобходимопроизводитьотсчеттемпературыиспарения на манометре низкого давления на приборной доске. Разность между измеренной температурой всасывающего трубопровода и отсчитаннойтемпературойиспаренияявляетсяперегревомпарахладагента. Притакойрегулировкеперегревсоставляетоколо10 °С. Вслучае отклонения измеренного перегрева от указанного можно подрегулироватьперегрев. Поворачиваниемустановочногошпинделя 8 влево

— против направления вращения часовой стрелки перегрев уменьшается, аповорачиваниемвправо— увеличивается. Полныйоборот шпинделя даетизменение в0,5 °С. Нормальнымобразомтерморегулирующий вентиль и всасывающий трубопровод на одной стороне вагона работают в двухцилиндровом режиме, если во время ремонтных работнепереключенызажимымагнитныхвентилейвкрышном агрегате. Для контроля необходимо проверить температуру трубопровода между магнитным вентилем и терморегулирующим венти-

лем. Терморегулирующий вентиль работает в двухцилиндровом режиме, причемсоединительныйтрубопроводмеждунимимагнитным вентилем теплый. В заключение следует измерить перегрев с обеих сторон

Установленный перегрев пара хладагента достаточен, если он как в двухцилиндровом режиме, так и в четырехцилиндровом режиме будет не менее 5 °С.

Читайте так же:
Вода в системе холодильной установки

Если перегрев превышает 15 °С, то следует повернуть регулировочныйшпиндель 8 натриоборотавлево, послечегодолжнобытьзаметно уменьшениеперегрева. Еслижеперегревнеуменьшается, тоимеетместонеисправность терморегулирующего вентиля илиустановки.

Время работы холодильной установки от начала включения, переключения на четырехцилиндровый режим или от дополнительной регулировки терморегулирующего вентиля до измерения температуры всасывающего трубопровода должно быть не менее 20 минут, чтобы при измерении или отсчете было достигнуто установившеесясостояние. Вовремяизмерениянеобходимонаблюдатьза прибором для измерения температуры. В случае сильных колебаний температуры всасывающего трубопровода необходимо попытаться устранить эти колебания повышением перегрева (регулировочный шпиндель 8 повернуть на два оборота вправо). Колебания температуры всасывающего трубопровода вызываются колебаниямитемпературыпотокавсасываемогогаза— перегревпотокавсасываемогогазаменяетсяпостоянно. Еслиустранениеколебанийтемпературы всасывающего трубопровода не удается, то необходимо заменитьтепловуючастьтерморегулирующеговентиля. Колебания температуры перегрева допустимы до ±3 °С, но ниже 5 °С перегрев не допустим.

Если, например, на всасывающем трубопроводе температура составляет 15 °С, в то время как на манометре низкого давления давление испарения, равное 0,28 МПа = 6 °С температура испарения, то перегрев пара хладагента составляет 9 °С.

Приколебанияхтемпературывсасывающеготрубопроводамежду 13,5 °С и 16,5 °С при постоянной температуре испарения минимальная температура перегрева составляет 7,5 °С. После установки температуры перегрева необходимо навинтить колпачок 10 , затянуть его и запломбировать.

Терморегулирующие вентили

Терморегулирующие вентили ТРВ предназначены для автоматической подачи холодильного агента в испаритель холодильной машины в зависимости от перегрева выходящих из испарителя паров. В терморегулирующих вентилях холодильный агент дросселируется с давления конденсации до давления кипения.

Терморегулирующие вентили могут быть с внутренним и внешним уравниванием; первые применяют в змеевиковых испарителях, в которых падение давления холодильного агента невелико, вторые — для заполнения испарителей холо¬дильным агентом, в которых падение давления составляет следующие величины:

Температура кипения, °С10÷0-5÷-15-20÷-30
Падение давления (не менее), МПа0,01760,00980,0039

Исправная работа ТРВ во многом зависит от чистоты фильтра и дросселирующего отверстия, герметичности трубки и сохранности изоляции термобаллона.

Термобаллон устанавливается на гладком, хорошо очищенном участке трубопровода после испарителя и крепится к верхней части образующей трубы хомутом и капиллярной трубкой соединяется с регулирующим вентилем.

В ТРВ с внешним уравниванием давления предусмотрены уравнительная трубка, врезаемая на небольшом расстоянии от термобаллона по ходу пара и всегда размещаемая вне охлаждаемого помещения, в то время как ТРВ с внутренним уравниванием давления могут располагаться как внутри, так и снаружи.

Наиболее часто встречающиеся неисправности в работе ТРВ связаны с засорением его фильтра и замерзанием дроссельного отверстия. Признаком засорения фильтра является покрытие инеем выходного штуцера вследствие дросселирования хладагента при проходе через загрязненную фильтрующую сетку. Образование ледовой пробки в дроссельном отверстии ТРВ, наоборот, приводит к оттаиванию инея с поверхности входного штуцера и поверхности последующих элементов. После прогрева ТРВ горячей водой циркуляция хладагента в испарительной батарее возобновляется. Признаком нормальной работы ТРВ служит обмерзание труб и арматуры от выходного штуцера.

Электронные расширительные вентили фирмы ALCO CONTPOLS

Электронные расширительные вентили фирмы ALCO CONTPOLS

Реле давления

В холодильных установках при отклонении давления от заданных значений применяют приборы регулирования давления, защиты и сигнализации: реле низкого и высокого давления, реле контроля смазки.

Реле низкого давления РНД предназначены для двухпозиционного регулирования давления холодильного агента в испарителе или защиты компрессора от пониженного давления в линии всасывания. РНД устанавливаются на всасывающей стороне компрессора и могут использоваться в качестве регуляторов давления всасывания компрессора, а также служить приборами защиты.

В первом случае они управляют работой компрессора, меняя его холодопроизводительность путем отключения отдельных цилиндров или способом пуск-остановка. Об исправности их работы можно судить непосредственно в процессе эксплуатации холодильной установки по давлениям, при которых компрессор включается и останавливается, и в случае необходимости проводить соответствующую корректировку в настройке.

Если же прибор используется в качестве защиты установки, то периодически (один раз в месяц), прикрывая всасывающий клапан на работающем компрессоре и понижая давление на всасывании, проверяют соответствие момента размыкания контактов реле с заданным значением. По разности моментов выключения и включения компрессора оценивают действительную нечувствительность прибора.

Реле высокого давления РВД, присоединенное к нагнетательному патрубку компрессора, служит только защитным прибором от высокого давления нагнетания. Настраиваемое давление в реле должно быть ниже давления срабатывания предохранительных клапанов. Проверка на размыкание контактов осуществляется увеличением давления в конденсаторе за счет уменьшения количества прокачиваемой через него воды. Наоборот, увеличивая подачу воды в конденсатор, фиксируют момент включения компрессора.

Читайте так же:
Регулировка дверей холодильника liebherr

Реле контроля смазки РКС применяют для защиты компрессоров от нарушений в системе смазки. Для проверки правильности его действия при работающем компрессоре, ослабляя пружину редукционного клапана масляного насоса, снижают давление масла, а точнее разность между давлением масла и давлением на всасывании хладагента в компрессор до момента размыкания контактов и сравнивают эту разность с настроечной величиной.

Автоматический регулятор давления кипения (дроссель по давлению «до себя»)

Поддерживает заданное давление кипения холодильного агента в испарителе. В холодильной машине, обслуживающей несколько охлаждаемых объектов, которые характеризуются различными температурами воздуха, автоматический регулятор применяют также в качестве устройства, отделяющего испаритель с более высоким давлением кипения от других испарителей с более низким давлением.

Регулятор, устанавливается после испарителя на всасывающем горизонтальном трубопроводе, является статическим регулятором прямого действия.

При повышении давления холодильного агента на входе в регулятор мембрана прогибается и поднимает клапан, в результате чего проходное сечение увеличивается. При уменьшении давления холодильного агента клапан опускается и прикрывает проход. Регулятор настраивают винтом задатчика, вращая его по часовой стрелке, вследствие чего регулируемое давление увеличивается. Настройку регулятора следует вести по контрольному манометру, установленному на испарителе.

Регулятор производительности «после себя»

Служит для регулирования холодопроизводительности компрессора с помощью изменения действительной объемной производительности компрессора путем перепуска (байпасирования) части сжатого пара из нагнетательной полости во всасывающую.

При этом методе регулирования теряется работа, затраченная на сжатие байпасированного пара. Кроме того, возрастает температура перегрева всасываемого в компрессор пара и, как следствие, повышается температура конца сжатия. Это в свою очередь требует установки терморегулирующего устройства, впрыскивающего жидкий холодильный агент в нагнетательную полость.

Такой способ регулирования холодопроизводительности компрессора мало-экономичен, однако прост в конструктивном исполнении, обеспечивает плавное регулирование производительности и применим ко всем поршневым компрессорам, в том числе прямоточным.

Регулятор давления конденсации или водорегулирующий вентиль

Устанавливается на входе воды в конденсатор, является прибором пропорционального регулирования и поддерживает постоянное давление конденсации, регулируя расход воды, охлаждающей конденсатор.

В водорегулирующем вентиле мембранного типа в качестве чувствительного элемента использована мембрана, на которую воздействует давление конденсации. При повышении давления конденсации мембрана прогибается. Шток, преодолевая сопротивление пружины, отжимает клапан от седла. В результате уменьшения тепловой нагрузки на конденсатор или понижения температуры воды давление конденсации снижается, пружина приподнимает клапан, проходное сечение уменьшается и расход воды сокращается. После остановки компрессора пружина прижимает клапан к седлу, прекращая подачу воды. При этом допускается проточка воды через закрытый клапан около 5 % от количества воды, циркулирующей через конденсатор при работе компрессора. Вентиль настраивается винтом.

Реле температуры (РТ) или термореле

Применяют в малых холодильных установках для регулирования температуры в охлаждаемом объекте включением и выключением исполнительного механизма (например, соленоидного вентиля перед терморегулирующим вентилем) или пуском и остановкой компрессора.

Надежная и правильная работа РТ во многом определяется местом установки термобаллона. Капиллярная трубка, соединяющая термобаллон с прибором, должна иметь не менее одного витка диаметром 80-1000 мм. Назначение витков — сглаживать колебательный процесс в термосистеме при изменении температуры объекта регулирования.

Если температура в охлаждающем помещении выше величины задания прибора, то его контакты должны быть замкнуты, а соленоидный вентиль открыт. При понижении температуры ниже заданного контакты размыкаются и соленоидный вентиль закрывается.

Соленоидный вентиль (СВ)

Соленоидные (электромагнитные) вентили являются автоматической запорной арматурой двухпозиционного действия с электрическим дистанционным управлением. Они предназначены для автоматического закрывания прохода в трубопроводах с холодильным агентом, теплоносителем и водой.

Соленоидные вентили делят на две группы. В первую группу входят вентили комбинированного действия (диаметр условного прохода 6 и 15 мм), а во вторую — вентили непрямого действия (диаметр условного прохода 25 и 40 мм).

Одной из наиболее часто встречающихся неисправностей вентиля является повреждение электромагнитной катушки в результате попадания влаги. Наличие инея на поверхности кожуха — признак выхода катушки из строя или длительного его отключения. При исправной работе СВ кожух обычно бывает теплым. Повышенный же перегрев и гудящий звук в катушке свидетельствуют о неисправности клапана.

Читайте так же:
Холодильник атлант механическая регулировка

Наиболее вероятная причина неисправности — засорение отверстия вспомогательного клапана. В этом случае подъем вспомогательного клапана не обеспечивает открытие основного, так как из-за засорения отверстия не происходит выравнивания давления над и под мембраной. В связи с этим, при эксплуатации необходимо периодически чистить отверстие, через которое жидкость поступает в полость над мембраной, а также фильтрующую щель в клапане вентиля.

Электронный ТРВ – что это такое

Электронный ТРВ имеет 70-летнюю историю. Терморегулирующие вентили – изобретение германской компании Alco Controls . Целая гамма этих устройств предлагается regul — vent . Продукция бренда зарекомендовала себя временем.

Краткая история производителя

Электронные ТРВ разрабатывались Alco Controls на базе механических регулирующих вентилей, производство которых началось в 1924-м. Рынок потребовал создания устройств, способных поддерживать температуру технологических процессов. Бренд ответил разработкой терморасширительного вентиля. Впоследствии надежность, эффективность продукции способствовала завоеванию мировых рынков холодильной, климатической техники. Запрос технологов на прецизионные холодильные системы поставил новую задачу, на которую немцы отозвались созданием электронных регуляторов, которые часто называют и электрическими.

Зачем нужны ТРВ

Основная характеристика холодильных, климатических систем – холодопроизводительность . Владельцы кондиционеров, устанавливая температуру, в действительности задают сплит -системе некую холодопроизводительность , которая постоянно меняется автоматикой, отслеживающей изменения условий обслуживаемого пространства – разошлись облака, и вышедшее солнце начало прогревать комнату, или в холодильную камеру загрузили продукты, повысившие её температуру. Интенсивность производства холода, стабильность температурного режима обеспечивается именно ТРВ , гарантирующим оптимизацию эксплуатационных затрат. Например, электроэнергии.

Как работает механический ТРВ

Принцип действия ТРВ довольно прост – поступил сигнал от температурного датчика и регулятор «скомандовал», например, интенсифицировать выработку холода. На практике это означает:
— требуется повлиять на входящий в испаритель хладагент;
— обеспечить некоторые условия на выходе испарителя;
— постоянно изменять объемы выработки холода;
— реагировать на экономичность компрессора или группы компрессоров.

В схемах климатической техники ТРВ монтируется перед входом в испаритель, реагируя на температуру теплоносителя. Регулирование протекающих объемов хладагента осуществляется механически – мембрана воздействует на заслонку. Деформация мембраны – это реакция на давления, подающиеся на её противоположные стороны – одно от выхода, другое от входа в испаритель. Параллельно мембрану удерживает пружина, степенью сжатия которой определяется перегрев хладагента. Эта тройка воздействующих на заслонку факторов и меняет проток хладагента.

Как работает электронный ТРВ

Электронные ТРВ решили проблемы механических, основным недостатком которых были мембраны. На смену последним пришло регулирование протока хладагента игольчатой заслонкой. Перемещает ее шаговый электродвигатель – число ступеней регулирования – 250

1500. Воздействующие факторы генерируются несколькими датчиками. Не забыты вход/выход испарителя, появились другие.

Многообразие воздействий, введенных конструкторами, оптимизирует положение «заслонки». Результат – снижается перегрев хладагента. Например, при механическом регулировании индикатор достигал 10º, электронные снизили показатель вдвое. Производители, рекламируя применение электронных ТРВ , обещают 20-процентное снижение электропотребления . Цепочка здесь такая:
— величина перегрева упала;
— снизилась температура на входе компрессора;
— снизилась температура конденсации;
— сократилось электропотребление .

Типы электронных ТРВ

Сегодня разработчикам климатической техники, холодильного оборудования рынком предлагаются два типа ТРВ :
— импульсно-модулирующие, заслонка которых систематически принимает положение «открыта/закрыта». Цикл занимает 6 секунд – открывшись, заслонка начинает пропускать хладагент. Чем длительнее период «открыта», тем больше масса протока. Длительность открытого положения определяет электронный контроллер, чаще называемый термостатом, отслеживающим перегрев хладагента.

Производители гарантируют 15-летнюю эксплуатацию такого ТРВ , в течение которой цикл «открыта/закрыта» повторится 80 миллионов раз. Среди преимуществ этого типа регуляторов – способность полностью заблокировать проток. Последнее избавляет конструкцию климатической, холодильной техники от соленоидных вентилей. При аварийном пропадании электроэнергии конструкцией предусмотрено автоматическое перекрытие магистрали хладагента;
— плавно регулирующие протекание хладагента – используют шаговые электродвигатели. Применение последнего исключает гидроудары . Ход «заслонки» определяется мизерным поворотом ротора, не превышающим 1.8º, что трансформируется в поступательное её перемещение. Профиль перекрываемого сечения имеет сложную конфигурацию, обеспечивающую линейность изменения объема хладагента.

Несколько замечаний

Импульсно-модулирующие ТРВ , провоцирующие гидроудары , не рекомендуют монтировать на оборудовании холодопроизводительностью свыше 17 кВт. Трубопроводы, конечно, выдержат, но пайка электронных плат может подвести.

Достоинства электронных ТРВ определяются компонентами, боящимися низких температур. Иногда сбоит ПО.

Читайте так же:
Как регулировать температуру в холодильнике свияга

Впрочем, специалисты РЕГУЛВЕНТ всегда предложат надежное конструкторское решение.

Ручная регулировка подачи фреона в Direct Die системах

Нельзя не отметить, что растут не только количественные, но и качественные показатели. Все больше оверклокеров перестает использовать воздушное охлаждение. Теперь им подавай что-нибудь поэффективнее. И если несколько лет назад водяное охлаждение компьютера было экзотикой, то теперь оно уже широко и прочно внедрилось в оверклокерские массы. Тот же процесс происходит и с фреоновым охлаждением. Пару лет назад русскоязычных обладателей фреоновых систем можно было пересчитать по пальцам одной руки. Теперь же, если кому-нибудь придет в голову повторить эту процедуру, придется задействовать уже гораздо большее количество конечностей. И если так дело пойдет и дальше, то скоро уже воздушное охлаждение превратится в экзотику. На фоне всего этого фреоно-водяного изобилия.

Но не все так беззаботно и весело. Есть все же пара туч на бескрайнем фреоновом небе. Одна из них – проблема дросселирующего элемента. Вкратце напомню принцип действия Direct Die.

В парокомпрессионной холодильной машине осуществляется замкнутый цикл циркуляции хладагента. В испарителе хладагент кипит (испаряется) при пониженном давлении и низкой температуре. Необходимая для кипения теплота отнимается от охлаждаемого тела, вследствие чего его температура понижается (вплоть до температуры кипения хладагента). Образовавшийся пар отсасывается компрессором, сжимается в нём до давления конденсации и подаётся в конденсатор, где охлаждается водой или воздухом. Вследствие отвода теплоты от пара он конденсируется. Полученный жидкий хладагент через дросселирующий элемент, в котором происходит снижение его температуры и давления, возвращается в испаритель для повторного испарения, замыкая, таким образом, цикл работы.

Обычно в качестве дросселя фреоновой системы используется капилляр. Исходя из выбранной хладопроизводительности и температуры, его длину рассчитывают, используя эмпирические формулы, или ставят капилляр с параметрами, уже подобранными другими. Например, берут из таблицы, составленной Гари Ллойдом (Gary Lloyd).

реклама

В итоге получается холодильная машина, рассчитанная на выбранную хладопроизводительность и температуру. Причем, достаточно приблизительно. Потом готовую систему нужно будет настраивать под то железо, которое она будет охлаждать. То есть конкретно под его тепловыделение. Которое, вдобавок, изменяется в широких пределах в зависимости от степени загрузки. Дело в том, что фреона в испаритель должно поступать строго определенное количество. При недостаточной подаче фреона происходит падение производительности системы. При излишней подаче, фреон не будет выкипать полностью в испарителе и может по всасывающей трубке попасть в компрессор, что приведет к выходу его из строя.

Поэтому и настраивают (и заправляют) систему под режим минимальной нагрузки. Чтобы гарантированно защитить компрессор. А для чего нужна система, работающая вполсилы? С этим, конечно, можно смириться, если фреонка строилась для постоянной повседневной работы. Но все равно на душе остается неприятный осадок. Хочется, очень хочется выжать из фреонки все.

Вот и выходит, что точную длину капилляра для самодельной системы рассчитать невозможно, а нужно подбирать экспериментальным путем. Что является частью настройки системы. Тест. Выпуск фреона из системы. Укорачивание капилляра. Вакуумирование-заправка. Тест. И так многократно. До полной победы. Долгий и сложный процесс. Именно эти сложности регулировки и отпугивают начинающих.

Но и это еще не все. Допустим, что вы убили кучу времени, выпустили в атмосферу тучу фреона, который проел в озоновом слое планеты дыру, размером с Австралию, и идеально отладили систему. Что дальше? Случился апгрейд, и вы вместо обычного процессора приобрели четырехядерный, восьмиядерный. Тепловыделение изменилось. Опять регулировка? Перепайка? Или смириться с еще большей потерей хладопроизводительность и в этот раз? Ничего себе проблемка.

Поэтому умы многих фреонщиков и беспокоит идея регулируемого дросселя. Очень хочется поставить такое устройство, которое бы позволяло производить регулировку подачи фреона «на лету». Добавлять фреона во время 100 процентной загрузки процессора, и убавлять на время его неполной загрузки. Чтобы исключить попадание жидкого фреона в компрессор. Тогда и замена процессора на более «горячий» или «холодный» тоже пройдет без утомительной перепайки-настройки. Одним поворотом ручки или винта.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector