Ayaklimat.ru

Климатическая техника
12 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Монтаж статических конденсаторов

Монтаж статических конденсаторов

Как правило, на предприятиях не представляется возможным естественным путем довести коэффициент мощности до величины 0,92 – 0,95, поэтому в дополнение к естественным мероприятиям применяют искусственные методы повышения коэффициента мощности с помощью специальных компенсирующих устройств. В качестве компенсирующих устройств можно использовать статические конденсаторы, синхронные компенсаторы и перевозбужденные синхронные электродвигатели. В промышленности синхронные компенсаторы и перевозбужденные синхронные электродвигатели не применяются по экономическим соображениям. Наибольшее распространение получили статические конденсаторы. Малый вес конденсаторов, отсутствие движущихся частей, небольшие потери энергии, простое обслуживание, безопасность и надежность в эксплуатации позволяют широко применять их на предприятиях с мелкомоторной нагрузкой.

Статические конденсаторы изготовляют в виде элементов (банок). Каждый элемент конструктивно состоит из бака с изоляторами и выемной части, состоящей из батарей и секций.

Конденсаторы на номинальное напряжение 220,380, 660 В изготовляют в трехфазном исполнении с единичной мощностью от 4 до 50 квар, а на напряжение 1; 3; 6 и 10 кВ однофазными с единичной мощностью от 10 до 75 квар.

При отключении батареи конденсаторов от сети, вследствие остаточного электрического заряда между обкладками конденсаторов, напряжение на шинах батареи может сохраниться близкое по величине к напряжению сети. Поскольку естественный саморазряд конденсаторов занимает длительное время, при повторном подключении неразряженной батареи к электрической сети, величина напряжения на ее шинах может достигнуть примерно удвоенного напряжения сети, а это вызовет значительный бросок тока.

Чтобы обеспечить безопасность прикосновения к отключенным конденсаторам, они должны быть автоматически разряжены, при этом напряжение должно упасть до нуля. Для этого при монтаже конденсаторных батарей устанавливают индуктивные или активные разрядные сопротивления, которые подключаются параллельно конденсаторам.

Разрядное сопротивление обычно подбирают так, чтобы потери активной мощности в сопротивлении не превышали 1 Вт на 1 квар мощности батареи.

Разрядные сопротивления могут быть включены в звезду, треугольник или открытый треугольник. Однако монтаж по схеме треугольника имеет преимущества перед звездой в том отношении, что в случае обрыва цепи одного из сопротивлений оставшиеся сопротивления будут соединены по схеме открытого треугольника и возможность разряда сохранится для всех трех фаз конденсатора.

В электроустановках напряжением 6-10 кВ в качестве разрядных сопротивлений обычно монтируют два однофазных трансформатора напряжения, соединенных по схеме открытого треугольника, а в электроустановках 0,4 кВ часто применяют разрядные сопротивления из ламп накаливания, соединенных попарно-последовательно в каждой фазе.

Для надежности разрядные сопротивления подключают к шинам конденсаторных батарей наглухо, без установки в цепи отключающих аппаратов и предохранителей.

Требуемую мощность компенсирующей установки собирают из отдельных конденсаторных банок, которые соединяют в батарею. Батареи большой мощности при монтаже разделяют на отдельные секции. Это удобно для осмотра и ремонта каждой секции в отдельности, а также регулирования потребления реактивной мощности в течение суток.

Монтаж статических конденсаторов напряжением до 0,4 кВ, устанавливаемых в производственных помещениях производится в металлических шкафах в один или два ряда.

Место монтажа также зависит от схемы компенсации. Различают индивидуальную, групповую и централизованную компенсацию реактивной мощности. При использовании групповой или централизованной компенсации реактивной мощности батарею статических конденсаторов присоединяют к шинам распределительных или вводно-распределительных щитов, а в некоторых случаях и к шинам трансформаторной подстанции при помощи дополнительных аппаратов управления. При индивидуальном способе компенсации конденсаторная установка подключается к сети через общий аппарат управления с электроприемником.

При монтаже конденсаторных установок предусматривается защита от токов короткого замыкания, действующую на отключение без выдержки времени.

Конденсаторные установки нельзя устанавливать во взрыво- и пожароопасных помещениях, а также в помещениях с насыщенной токопроводящей пылью и химически активной средой.

Компания ООО Промтехавтоматизация предлагает вам услуги по электромонтажу компенсаторов реактивной энергии на основе статических конденсаторов в г. Ростове-на-Дону, Ростовской области и России.

Эксплуатация конденсаторных установок

конденсаторные установки

Установка и включение в эксплуатацию конденсаторной установки допускается с разрешения элергоснабжающей организации. Общий порядок сдачи и приемки в эксплуатацию конденсаторной установки должен соответствовать ПУЭ, ПТЭ электроустановок потребителей и ПТБ при эксплуатации электроустановок потребителей и «Инструкции по эксплуатации конденсаторов для повышения коэффициента мощности электроустановок переменного тока частоты 50 гц».

При сдаче конденсаторной установки в эксплуатацию должна предъявляться соответствующая документация, показывающая технические данные конденсаторной установки, ведомость установленных конденсаторов с указанием их порядкового номера в установке, тип, заводской номер, год изготовления и число фаз, акт о наружном осмотре установки, протоколы испытаний релейной защиты и пусковых испытаний установки.

Читайте так же:
Техника безопасности при установке натяжного потолка

Эксплуатация конденсаторной установки запрещается при: напряжении выше 110% номинального; неравномерной нагрузке фаз более 10%; увеличении тока КУ более чем на 15% номинального значения; вспучивании стенок бака конденсаторов; температуры, превышающей допустимую. В процессе эксплуатации конденсаторных установок производятся их ежедневный осмотр и эксплуатационные измерения, периодический осмотр, текущий и капитальный ремонты. Ежедневный осмотр осуществляется дежурным электриком. Результаты осмотра записываются в журнал эксплуатации. Осмотр особенно необходим в первые дни эксплуатации, когда наиболее часто обнаруживаются заводские дефекты, которые при дальнейшем их развитии могут привести к авариям.

Конденсаторные установки предназначаются для параллельного включения с электроприемниками и во время эксплуатации работают с полной нагрузкой, зависящей от изменения напряжения и высших гармонических. Перенапряжения и перегрузка сокращают срок их службы. В связи с этим должны строго контролироваться напряжение, ток и окружающая температура в пределах допустимых значений для данного вида установки. В установках, подвергающихся солнечной радиации, следует либо предусматривать индивидуальную защиту, от облучения в виде козырьков, либо применять конденсаторы, предназначенные для эксплуатации при более высоких температурах (до 45 или 50°С). Величину напряжения и тока следует ежедневно замерять и записывать в журнал эксплуатации. Равенство емкостей трех фаз конденсаторной установки должно контролироваться тремя амперметрами, показывающими силу тока в каждой фазе установки. При неравномерности нагрузки фаз конденсаторной установки более 10% эксплуатация ее не допускается.

Температура внутри помещения и шкафов для конденсаторов внутренней установки и в месте расположения наружных установок контролируется ртутным термометром с обязательной ежедневной записью температуры, особенно в летнее время, в период наиболее высокой температуры окружающего воздуха между 12—16 ч. Термометр должен быть установлен в наиболее нагреваемом месте посредине между конденсаторами, таким образом, чтобы была обеспечена возможность наблюдения за его показаниями без отключения установки. В южных районах конденсаторные установки необходимо оборудовать температурным сигнализатором для дистанционного контроля температуры на щите дежурного. При ежедневном осмотре работающей конденсаторной установки особенно следует обращать внимание на возможность вспучивания стенок баков конденсаторов (рис.). При вспучивании более 8— 10 мм с одной стороны конденсаторы снимаются с эксплуатации.

Допускаемое увеличение ширины баков конденсаторов при вспучивании их стенок.

а — для конденсаторов первого габарита; б второго габарита.

Не допускается работа конденсаторов при капельной течи пропиточной жидкости. Наличие пятен пропиточной жидкости не является основанием для снятия конденсаторов с эксплуатации, требуется лишь взять их под наблюдение. Течь масла может предшествовать повреждению конденсатора, так как при продолжительной течи давление в конденсаторе может сравняться с окружающим давлением и внутрь конденсатора через трещину начнет проходить свежий воздух, в результате масло отсыревает, и конденсатор может выйти из строя. Все обнаруженные во время осмотра конденсаторной установки неисправности должны быть записаны в журнал эксплуатации. Периодические осмотры конденсаторных установок осуществляются персоналом, обслуживающим подстанции, одновременно с осмотром другого оборудования в соответствующие сроки, установленные для каждого вида оборудования. Могут быть и внеочередные осмотры, связанные с аварией установки, тяжелыми метеорологическими условиями, отключением установки релейной защитой и т. п.

Осмотр без отключения работающей конденсаторной установки производится в сроки, определенные местными инструкциями не реже одного раза в декаду для установок мощностью более 500 квар и не реже одного раза в месяц для установок мощностью 500 квар и ниже. Результаты осмотра регистрируются в журнале эксплуатации. Проверку емкости конденсаторов и целостности плавких вставок предохранителей необходимо производить не реже одного раза в месяц. Смена сгоревших и неисправных предохранителей должна производиться на отключенной конденсаторной установке после контрольного разряда всех конденсаторов разрядной штангой.

Читайте так же:
Установка встроенной техники бош

При повторном автоматическом отключении конденсаторной установки включение ее разрешается только после устранения причин, вызвавших отключение, с обязательной проверкой емкости каждого конденсатора. Конденсаторы следует снимать с эксплуатации при увеличении емкости в процентах, более указанных в табл.

Эксплуатация конденсаторных установок.

Конденсаторная установка должна находиться в техническом состоянии, обеспечивающем ее долговременную и надежную работу.Управление конденсаторной установкой, регулирование режима работы батарей конденсаторов должно быть, как правило, автоматическим.При напряжении, равном 110% от номинального значения, вызванном повышением напряжения в электрической сети, продолжительность работы конденсаторной установки в течение суток должна быть не более 12 ч. При повышении напряжения свыше 110% от номинального значения конденсаторная установка должна быть немедленно отключена.Если токи в фазах различаются более чем на 10%, работа конденсаторной установки не допускается.В месте установки конденсаторов должен быть предусмотрен прибор для измерения температуры окружающего воздуха. При этом должна быть обеспечена возможность наблюдения за его показаниями без отключения конденсаторной установки и снятия ограждений.Если температура конденсаторов ниже предельно допустимой низшей температуры, обозначенной на их паспортных табличках или в документации завода-изготовителя, то включение в работу конденсаторной установки не допускается.Включение конденсаторной установки разрешается лишь после повышения температуры окружающего воздуха до указанного в паспорте значения температуры.Включение конденсаторной установки после ее отключения допускается не ранее чем через 1 мин. при наличии разрядного устройства, присоединяемого непосредственно (без коммутационных аппаратов и предохранителей) к конденсаторной батарее.

Конденсаторная установка должна быть обеспечена:

резервным запасом предохранителей на соответствующие номинальные токи плавких вставок;

специальной штангой для контрольного разряда конденсаторов, хранящейся в помещении конденсаторной батареи;

На дверях снаружи и внутри камер, дверях шкафов конденсаторных батарей должны быть выполнены надписи, указывающие их диспетчерское наименование. На внешней стороне дверей камер, а также шкафов конденсаторных батарей, установленных в производственных помещениях, должны быть укреплены или нанесены несмываемой краской знаки безопасности. Двери должны быть постоянно заперты на замок. 2.9.14. При замене предохранителей конденсаторная установка должна быть отключена от сети и должен быть обеспечен разрыв (отключением коммутационного аппарата) электрической цепи между предохранителями и конденсаторной батареей. Если условий для такого разрыва нет, то замена предохранителей производится после контрольного разряда всех конденсаторов батареи специальной штангой.Контрольный разряд конденсаторов разрешается производить не ранее чем через 3 минуты после отключения установки, если нет других указаний заводов-изготовителей.При техническом обслуживании конденсаторов, в которых в качестве пропитывающего диэлектрика используется трихлордифенил, следует принимать меры для предотвращения его попадания в окружающую среду. Вышедшие из строя конденсаторы с пропиткой трихлордифенилом при отсутствии условий их утилизации подлежат уничтожению в специально отведенных местах.

Осмотр конденсаторной установки (без отключения) должен проводиться в сроки, установленные местной производственной инструкцией, но не реже 1 раза в сутки на объектах с постоянным дежурством персонала и не реже 1 раза в месяц на объектах без постоянного дежурства.Внеочередной осмотр конденсаторной установки проводится в случае повышения напряжения или температуры окружающего воздуха до значений, близких к наивысшим допустимым, действия защитных устройств, внешних воздействий, представляющих опасность для нормальной работы установки, а также перед ее включением.

При осмотре конденсаторной установки следует проверить:

исправность ограждений и запоров, отсутствие посторонних предметов;

значения напряжения, тока, температуры окружающего воздуха, равномерность нагрузки отдельных фаз;

техническое состояние аппаратов, оборудования, контактных соединений, целостность и степень загрязнения изоляции;

отсутствие капельной течи пропитывающей жидкости и недопустимого вздутия стенок корпусов конденсаторов;

наличие и состояние средств пожаротушения.

О результатах осмотра должна быть сделана соответствующая запись в оперативном журнале.Периодичность капитальных и текущих ремонтов, объем проверок и испытаний электрооборудования и устройств конденсаторной установки должны соответствовать требованиям норм испытания электрооборудования.

Читайте так же:
Техника для установки опор контактной сети

Современные конденсаторные установки компенсации реактивной мощности

Снижение потерь электроэнергии в электрических сетях — одна их важнейших задач в электроснабжении, особенно актуальная для крупных энергоемких предприятий. Компенсация реактивной мощности является одним из путей достижения данной цели.

Эта технология позволяет минимизировать потери энергии при передаче и улучшить энергетические характеристики на стороне потребителя: повысить коэффициент мощности оборудования — для потребителя, и понизить вредные гармоники питающего напряжения — для сети и поставщика.

Практически это значит, что к устройству постоянной нагрузки присоединяется компенсирующий конденсатор расчетной емкости (соответствующей реактивной мощности), а если нагрузка переменная, то в ход идут автоматические конденсаторные установки. И в том и в другом случае в итоге достижима отчетливая картина энергосбережения.

Изначально львиная доля элементов системы электроснабжения и электроприемников переменного тока, обладающих индуктивностью, потребляет наряду с активной мощностью еще и реактивную мощность, которая необходима для создания электромагнитных полей: в электродвигателях, трансформаторах, преобразователях напряжения, линиях электропередач, даже в лампа накаливания и т. п.

Циркуляция в линиях реактивной мощности негативно сказывается на работе энергосистемы в целом в силу снижения пропускной способности линий, трансформаторов и т. д., вызывая нагрев проводов, в конце концов — требует бОльшей полной мощности от поставщика.

Но если реактивная мощность — это часть полной мощности, неизбежно затрачиваемая на электромагнитные процессы в нагрузке, имеющей емкостную и индуктивную составляющую, то почему бы не сделать так, чтобы она циркулировала не по всей системе электропередач, а только между потребителем и местным конденсатором? Именно для этого и служат УКРМ — установки компенсации реактивной мощности.

Схема УКРМ — установки компенсации реактивной мощности

Конденсаторной установкой компенсации реактивной мощности называют электроустановку, состоящую из конденсаторов, и относящихся к ним вспомогательных устройств (выключателей, разъединителей, разрядных резисторов, устройств регулирования, защиты и т. п.) и ошиновки. Конденсаторная установка включает в себя одну или несколько конденсаторных батарей либо один или нескольких отдельно установленных конденсаторов, присоединенных к сети посредством коммутационных аппаратов.

Суть в том, что когда с помощью конденсаторной установки повышается коэффициент мощности (косинус фи) у потребителя, потребление реактивной составляющей от полной мощности из сети минимизируется, срок службы сети и оборудования, соответственно, увеличивается.

Так, при поддержании значения косинуса фи на уровне от 0,9 до 0,95, платежи за потребление практически бесполезной реактивной мощности — снижаются, так как в общем уменьшается нагрузка на трансформаторы и передающие кабели.

Здесь важно отметить, что и перекомпенсации допускать нежелательно, поскольку это становится экономически не целесообразным, ведь для получения косинуса фи достигающего 0,97-0,99, мощность компенсирующей установки пришлось бы повысить вдвое, а значит и заплатить за нее пришлось бы в 1,5 раза больше, хотя потребляемый ток вследствие такого мероприятия понизился бы всего на 3%.

Установка для компенсации реактивной мощности

Виды компенсации

Общей или централизованной компенсацией реактивной мощности называется такой подход, когда одна, общая для всего оборудования предприятия, регулируемая (автоматическая) конденсаторная установка, — располагается на трансформаторной подстанции или в главном распределительном щите. Это полезно, когда реактивная мощность на предприятии в течение дня варьирует между различными потребителями, то есть меняет время от времени свою величину, практически являясь сильно переменной характеристикой своеобразного составного потребителя.

При индивидуальной компенсации конденсаторы подбираются и устанавливаются к каждому отдельному двигателю индивидуально, это получается дешевле если двигателей не очень много, а работают они почти постоянно.

Если же различных единиц оборудования (потребителей электроэнергии) много, а работают они порознь и редко, то индивидуальная компенсация становится дорогостоящей затеей, поскольку часть конденсаторов будет попросту простаивать без дела, то есть какую-то часть времени они не будут востребованы вовсе. Таким образом, несколько мощных потребителей реактивной мощности, работающих обычно долгое время, являются типичными объектами индивидуальной компенсации.

На индивидуальную компенсацию несколько похожа групповая компенсация при которой отдельные конденсаторные установки используется для групп разнообразных электроприемников. Здесь так же разгружаются подводящие провода.

Тиристорные установки компенсации реактивной мощности

Для групповой компенсации хорошо подходят автоматические регулируемые конденсаторные установки, способные в зависимости от текущей реактивной нагрузки автоматически регулировать уровень компенсации. Особенно примечательны здесь тиристорные конденсаторные установки КРМТ, могущие эффективно работать в сетях с резкопеременной реактивной нагрузкой.

Такие установки отличаются превосходным, практически мгновенным быстродействием, что позволяет трансформаторам непрерывно работать в режиме почти чисто активной нагрузки, что продлевает срок их службы.

Число коммутаций для тиристоров неограниченно. Не зря сегодня КРМТ широко используются на многих химических и металлургических заводах, на целлюлозных фабриках, в лифтовом хозяйстве и везде, где характер нагрузок сильно нелинеен: инверторы, роботы, компрессоры, установки с фазным управлением и т. д. Плюс ко всему тиристорные установки бесшумны. Для защиты тиристорных установок применяются дроссели.

Оборудование для компенсации реактивной мощности

Тенденция к росту тарифов на электроснабжение ведет к тому, что применение установок компенсации реактивной мощности (УКРМ) для многих предприятий становится обыденной необходимостью. При этом окупаемость установленного оборудования для компенсации реактивной мощности составляет всего несколько месяцев.

В общем и целом, с точки зрения экономических преимуществ, установка компенсирующих конденсаторных батарей дает целый ряд плюсов:

потери в сетях и трансформаторах снижаются за счет уменьшения проходящего через них тока;

минимизируется эффект падения напряжения на линиях электропередач;

расчетная мощность системы делается меньше.

Иными словами, линии электропередачи, трансформаторы и распределительные устройства максимально разгружается благодаря избавлению от лишнего (реактивного) тока, защите от перекоса фаз, уменьшению высших гармоник и помех, а расходы на оплату для предприятия снижаются. В результате сами сети становятся более экономичными.

Эффекты от применения УКРМ

Если остановиться на эффектах систем КРМ более подробно, то можно сказать, что без применения установок УКРМ — в сети все время циркулирует значительная реактивная мощность, это снижает качество поставляемой электроэнергии, поскольку потери мощности в линиях оказываются значительными, имеют место перепады напряжения, а значит мощность силовых трансформаторов завышается, сечение передающих кабелей используется нерационально, пропускная способность на каждом этапе получается в конце концов ниже, чем могла бы быть.

В итоге плата за электроэнергию возрастает, а это — лишние финансовые траты. Если же в сети работает установка УКРМ, то потребление реактивной мощности от питающей сети уменьшается, следовательно достигаются энергосберегающий эффект и финансовая экономия.

Важно, что если вы решаете установить полноценную УКРМ с фильтрами гармоник, то прежде всего необходимо тщательно измерить все параметры сети: полную, активную и реактивную мощности, уровни гармоник, шумов, их величины, значения просадок напряжения, уровни перенапряжений. Так можно достигнуть многих полезных эффектов и избавиться от нежелательных побочных явлений: от вредных эффектов опасных гармоник (3-ей, 5-ой, 7-ой, 9-ой, 12-ой); избежать резонансных перенапряжений и перекоса фаз.

Что такое конденсаторные установки

Конденсаторная установка – это электроустановка, которая состоит из конденсаторов и дополнительного электрооборудования, и применяется для компенсации реактивной мощности электрооборудования. Вследствие работы трансформаторов, электродвигателей, пусковых устройств, происходит производство, как активной энергии, так и реактивной.

Принцип действия

Активная энергия применяется по назначению и превращается в тепловую, механическую, а реактивная отсылается на создание электромагнитных полей и не дает никакой пользы. При этом создаёт дополнительную нагрузку на кабельные линии и проекты электроснабжения приходится разрабатывать с учетом появления реактивной мощности. А реактивная мощность оплачивается по счетчику согласно тарифу наряду с активной, а это довольно большая часть потребления электроэнергии.

Что такое конденсаторные установки

Конденсаторные установки снижают потерю в кабельных линиях, что приводит соответственно к уменьшению общего энергопотребления и снижению токовой нагрузки на линию.

Конструкция конденсаторной установки выполнена в виде электроприбора, состоящего из конденсатора и дополнительного электрического оборудования. Данная установка предназначена для компенсации реактивной мощности оборудования, создающей электромагнитные поля и дополнительную нагрузку на электроприборы.

Для регулировки нагрузки используются различные устройства, в том числе конденсаторы, контакторы, контроллеры и защитная аппаратура. С их помощью каждая конденсаторная установка может легко компенсировать реактивную мощность. Они довольно просты в монтаже и эксплуатации, работают практически бесшумно, способствуют сокращению потерь в кабельных линиях.

Принцип действия конденсаторных установок основан на эффекте динамической или коммутируемой компенсации реактивной мощности. С этой целью применяется специальная система конденсаторов, располагающихся в определенной последовательности. Непосредственная коммутация осуществляется с помощью контакторов или тиристоров. Первый вариант используется в большинстве конденсаторных установок с электромеханическими реле. Они обладают универсальной конструкцией, просты в использовании, стоят сравнительно недорого.

Второй вариант с использованием тиристорных систем считается более дорогим, однако он хорошо зарекомендовал себя в сетях с резко изменяющимися нагрузками. Подключение любого устройства может производиться на любых участках электрической сети, независимо от принципа действия.

Назначение установок КРМ

Конденсаторные установки известны еще и как установки КРМ – то есть компенсаторы реактивной мощности. Они широко используются в энергетике, трансформаторах, асинхронных двигателях и другом оборудовании с появляющейся реактивной мощностью. Данное явление доставляет определенные неприятности подключенному оборудованию из-за создания дополнительного напряжения в сети. Для снижения негативных последствий и предназначены установки, компенсирующие реактивную мощность.

Очень часто возникает вопрос, зачем нужна конденсаторная установка для чего используется это устройство? Основной функцией данных систем является поддержание заданного уровня коэффициента мощности потребителя. С этой целью в реальном времени отслеживаются изменения нагрузки, после чего в нужный момент происходит включение или отключение нужного количества конденсаторных батарей.

Большая часть нагрузки современных электрических сетей создается на промышленных предприятиях электродвигателями, трансформаторами и другим оборудованием с электромагнитными системами. Для их работы используется реактивная энергия, под действием которой появляется фазовый сдвиг между током и напряжением. При включении нагрузки происходит потребление не только активной, но и реактивной энергии. В связи с этим полная мощность увеличивается в среднем на 20-25% относительно активной мощности. Это соотношение и будет коэффициентом мощности.

Для того чтобы исключить попадание в сеть реактивной мощности применяются различные виды конденсаторных установок. За счет этого она вырабатывается и остается на месте, где и потребляется электрическими нагрузками.

Существует несколько видов установок компенсации реактивной мощности: автоматические высоковольтные и низковольтные, тиристорные, фильтрокомпенсирующие, а также тиристорные установки с фильтрацией высших гармоник. Отдельно следует отметить конденсаторные установки нерегулируемые, компенсирующие реактивную мощность постоянных нагрузок. Типичными примерами такого оборудования различные виды насосов, особенно используемых в системах тепло- и водоснабжения. В этом случае коэффициент мощности повышается за счет приложения постоянной мощности конденсаторов напрямую к реактивной нагрузке.

Преимущества использования конденсаторных установок

Основными положительными качествами компенсационных систем является отсутствие каких-либо вращающихся частей, небольшие удельные потери активной мощности, возможность подбора любой практически необходимой мощности компенсации, возможность подключения к любой точке сети, простая эксплуатация и монтаж, отсутствие шумов во время работы, относительно низкие капиталовложения.

Конденсаторные установки бывают в двух вариантах:

  • Модульные – используют для компенсирования реактивной мощности в групповых сетях и сетях энергообеспечения на крупных и средних предприятиях.
  • Моноблочные – имеют широкое применение для компенсирования реактивной мощности в групповых сетях на малых предприятиях.

Если предприятие работает, круглые сутки и образование реактивной энергии случается постоянно, то выгодно чтобы конденсаторные установки работали круглые сутки. Но если на производстве, работа распределена неравномерно, предположим, в ночное время нагрузка значительно снижается, необходимо обеспечивать их выключение, так как непрерывная работа может привести к лишнему увеличению напряжения в электросетях.

Таким производствам больше подходят установки с автоматической регулировкой. Они имеют автоматический регулятор, он постоянно следит за значение коэффициента мощности, и, регулирует количество подключенных батарей, что позволяет максимально возмещать её объем.

Срок окупаемости при правильном выборе, может составить от шести месяцев до полутора лет.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector