Ayaklimat.ru

Климатическая техника
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Пассивный тонкомпенсированный регулятор громкости с НЧ коррекцией. Часть 2

Пассивный тонкомпенсированный регулятор громкости с НЧ коррекцией. Часть 2

Вебинар «Особенности применения литиевых батареек Fanso (EVE) в популярных решениях» (30.11.2021)

Разводка плат сделана автором с помощью программы Sprint Layout 6.0, а изготовление плат и их фотошаблонов кратко описано в [1]. Как видно из Рисунка 3а, плата ТКРГ по схеме на Рисунке 2 получилась небольшого размера (20×40 мм), а ее фотографии (Рисунок 3б, в, г) позволяют судить о внешнем виде устройства.

Трансформатор ТОТ18 (взятый, на всякий случай, на пробу, поскольку его небольшая индуктивность в 2.0 Гн вызывала сомнения автора в качественной работе ТКРГ на его основе), как ни странно, показал просто отличный результат с конденсатором 47 мкФ по схеме Рисунок 4. За счет применения всего одного 14-контактного разъема XRI (двухрядные штыри с шагом 2 мм – PLD2-14), к которому подключается ответный разъем XRO (двухрядные гнезда – PBD2 2×14) с подключенными к нему обоими переменными резисторами RcA-RcB и RgA-RgB, схема несколько упростилась (по сравнению со схемой Рисунок 2). За счет небольшого снижения номиналов резисторов R1A, R2A, R1B и R2B (до 3.6 кОм против 3.9 кОм в схеме Рисунок 2) несколько увеличилась добротность соответствующих контуров, что позволило немного увеличить емкости конденсаторов C3A и C3B (до 6.8 нФ против 5.6 нФ), приблизив максимум пика резонансной кривой к 20 кГц. Все это позволило получить минимум АЧХ ТКРГ в районе 1.5 кГц (как и в схеме на Рисунок 2). Конденсаторы CcA и CcB – для поверхностного монтажа размером 1206 на напряжение 6.3 В. Остальные компоненты схемы Рисунок 4 – те же, что и в схеме Рисунок 2.

Рисунок 4.Принципиальная схема двухканального ТКРГ на основе трансформатора ТОТ18.

Разводка платы (Рисунок 5а) размером 32.5×22 мм получилась несколько меньшей площади (715 мм 2 ), чем предыдущая плата (Рисунок 3а, 800 мм 2 ). В дополнительных материалах к статье разводка обеих плат приведена в файле формата *.lay6. Здесь необходимо добавить, что неиспользуемые выводы 2 и 5 трансформатора откусываются, и, таким образом, трансформатор держится на четырех ножках (1, 3, 4 и 6), в отличие от крепления трансформатора на плате Рисунок 3 всеми шестью ножками. Фотографии (Рисунок 5б, в) позволяют судить о внешнем виде устройства.

Для получения АЧХ ТКРГ автор использовал звуковую карту компьютера и программу анализатора спектра в реальном времени (Real Time Аnalyser – RTA).

Генератором автору служил звуковой файл с тестовым сигналом. В качестве такового – так называемый розовый шум, в котором амплитуды распределены обратно пропорционально частоте. Такое распределение амплитуд розового шума соответствует равномерному распределению мощности по всем частотам, а поскольку анализатор спектра показывает мощность сигнала на определенной частоте, то розовый шум на анализаторе представляет собой горизонтальную прямую линию. О тестовых сигналах и различного рода шумах более подробно написано в статье [7].

Измерение спектра выполнялось бесплатно распространяемой программой TrueRTA (ее можно скачать из Интернета). Звуковые файлы PseudoPink_30sec.wav, PinkNoise.flac (розовый шум) также были скачаны из Интернета и записаны на телефоне.

Наиболее качественным розовым шумом (который и использовался автором) отличается звуковой файл PseudoPink_30sec.wav (этот файл приведен в дополнительных материалах к первой части статьи). При проигрывании этого файла плеером jetAudio Plus в его настройках, во-первых, необходимо выбрать опцию Повтор текущей композиции, чтобы зациклить воспроизведение и, во-вторых, убрать «галочку» в опции Затухание звука при паузе, возрастание при возобновлении, иначе через каждые 30 секунд громкость будет снижаться на несколько секунд, и для получения качественной «картинки» АЧХ необходимо будет «ловить момент».

Сигнал с выходного разъема телефона для наушников подавался на вход регулятора громкости, а сигнал с его выхода – на разъем микрофонного входа звуковой карты компьютера. Этот разъем (сиреневого цвета) расположен прямо на лицевой панели системного блока. Как видим, и аппаратные, и программные средства снятия АЧХ регулятора громкости абсолютно бесплатны и легкодоступны.

На Рисунке 6 приведены графики спектров, полученные с помощью вышеописанной технологии снятия АЧХ регулятора громкости. Дробные значения от максимума соответствуют углу поворота движка резистора от максимального, составляющего около 300° (а не значениям его сопротивления).

Снимок экрана на Рисунке 6а приведен для двоякой цели. Во-первых, чтобы показать, что у розового шума спектр представляет собой практически горизонтальную прямую (белый шум на этом же графике представлялся бы наклонной прямой с максимумом, совпадающим с максимумом розового шума справа, и минимумом, составляющим 10%. 30% от максимума – слева). Во-вторых, для того чтобы продемонстрировать полное отсутствие коррекции АЧХ ТКРГ при максимальной громкости.

Читайте так же:
При установке системы ошибка 0xc000007b

Анализ остальных графиков (Рисунки 6б-6е) позволяет сделать следующие выводы.

  1. С помощью НЧ-коррекции можно существенно повысить уровень составляющих спектра в области НЧ и, таким образом, снять недостаток регулятора громкости [5], связанный с несоответствием его АЧХ с АЧХ линий равной громкости в области самых низких частот.
  2. При НЧ коррекции минимум кривой АЧХ приходится на 1.5 кГц (т.е., смещен вправо), что существенно ближе к кривым равной громкости, а без НЧ коррекции этот минимум составляет около 1 кГц, что дальше от кривых равной громкости.
  3. Анализируя правую часть графиков Рисунки 6б-6е, можно также заметить, что НЧ коррекция абсолютно не влияет на уровни составляющих спектра в области СЧ и ВЧ (т.е. выше 2 кГц).

Графики Рисунки 6в-6д показаны для случая, когда движок резистора НЧ коррекции установлен в положение, соответствующее 5/6 максимума (угла поворота), при котором максимум АЧХ на НЧ соответствует максимуму на ВЧ. Это означает, что в области НЧ максимум АЧХ можно еще немного поднять. Последнее особенно актуально для тех акустических систем (более дешевых и менее качественных), у которых АЧХ начиная с 50-60 Гц, испытывает существенный спад. Другими словами, применение в подобном ТКРГ НЧ-коррекции в области самых низких частот позволяет несколько поднять АЧХ таких акустических систем и, таким образом, повысить комфортное восприятие их звучания в области НЧ.

И последнее, что следует отметить. Как видно из схем, подобный ТКРГ – полностью пассивный, то есть в нем отсутствуют какие-либо ОУ, транзисторы и иные активные компоненты. А, как известно, именно пассивный ТКРГ отличается исключительно низким уровнем шума.

Высокое качество работы подобного регулятора громкости послужило причиной заменить ТКРГ в усилителе, описанным автором в статье [1].

Регулировка звука на операционном усилители

РГ Никитина

В своей предыдущей статье о модернизации усилителя Kenwood я упоминал о замене регулятора громкости на более качественный. В роли такого был выбран уже хорошо зарекомендовавший себя лестничный аттенюатор им. А.Никитина. Так как устройство пользуется популятростью у любителей хорошего звука, выкладываю описание моего опыта его повторения.

aleyer (www.diyaudio.ru)

Автор: aleyer

Не буду вдаваться в многословные описания различных способов организации регулировки громкости в усилителе, скажу, что по совокупности характеристик, регулятор по схеме А. Никитина является одним из самых интересных вариантов. При использовании хороших комплектующих и правильно разведенной платы, он обеспечивает меньшее влияние на сигнал, чем популярные потенциометры, имеет постоянное входное сопротивление, больше ступеней регулировки, чем дискретные регуляторы типа DACT и большую надежность в аварийных ситуациях (как например подача с источника половины питающего напряжения, что однажды случилось у меня), чем электронные регуляторы. Есть и еще один плюс. Плату с регулятором громкости можно расположить непосредственно у платы УМ, а органы управления вывести на переднюю панель, не беспокоясь о возможных наводках на длинные провода и не усложняя конструкцию „удлинителем“ для вала потенциометра.

Авторское описание регулятора и принцип его работы находятся в СТАТЬЕ, опубликованной в журнале РадиоХобби 2/2002г. В статье очень доходчиво описано устройство РГ, однако не приведен способ управления релюхами. При желании можно собрать схему управления регулятором с применением логики, но мне больше по душе микроконтроллеры. Остановился я на представителях семейства ATtiny. Преимущество управления при помощи МК, заключается в том, что можно выбрать и реализовать в прошивке любой способ управления громкостью: кнопками, с пульта дистанционного управления, при помощи потенциометра, либо энкодера.

По моему мнению, самыми оптимальными являются 2 варианта: при помощи потенциометра и пульта ДУ. Кнопки на передней панели усилителя не позволяют быстро изменить уровень громкости на значительную величину, в отличие от потенциометра, который за секунду можно повернуть на любой угол. Управление при помощи энкодера, по сравнению с потенциометром, лишает пользователя одного удобства — с потенциометром всегда видно, какой у усилителя выбран уровень громкости, даже без дополнительной индикации и при выключенном усилителе. Ну а пультом ДУ можно пользоваться на расстоянии, этот плюс очевиден.

В моем случае, главным условием была максимальная компактность готового устройства. На плате должны были размещаться 6 реле, а также 2 микросхемки: микроконтроллер, через который будет совершаться управление реле, и 7-канальный драйвер реле ULN2003. Естественно, варианты установки микросхем в DIP корпусах были изначально отброшены из соображений экономии места на плате. Вторым условием было то, что для управления устройством предполагалось использовать родную ручку регулятора громкости, правда, уже с другим потенциометром, также максимально компактным. В качестве МК был выбран ATtiny44A в корпусе SO14, так как он идеально подходил для проекта, как по расположению пинов, так и по наличию АЦП, который нужен для реализации управления громкостью при помощи потенциометра. ATtiny24 также подходил, но разница в цене была минимальна, поэтому выбрал МК с большим объемом памяти. Старые версии чипов (без буквы А) также подходят.

Читайте так же:
Установка приложений операционной системы linux

В итоге получились такие схемки:

1 — лестничный аттенюатор с управлением на МК

Схема РГ Никитина

2 — стабилизированное питания для реле и микросхем

Схема стабилизированного питания для РГ Никитина

Cхемы можно также скачать в проекте EAGLE.

Первым, что было готово, стала прошивка для МК. Управление осуществляется при помощи подключаемых к плате одиночного потенциометра с линейной характеристикой (например на 10кОм). Для предотвращения щелчков в колонках при изменении уровня громкости применен алгоритм, который заключается в том, что при переключении реле сначала включаются те, которые устанавливают новый уровень громкости ослабляя сигнал, а через пару миллисекунд выключаются предущие. Это не помогло на 100% избавиться от щелчков, они есть, но настолько тихие, что при нормальном использовании незаметны. Более того, если плавно крутить ручку потенциометра, когда играет музыка, то громкость изменяется очень плавно. В прошивку также был добавлен код для управления громкостью при помощи пульта ДУ стандарта RC5 (кнопками vol+, vol- и mute). Сам приемник для пульта (TSOP4838) впоследствии успешно разместился под передней панелью без необходимости его доработки.

Алгоритм работы, заложенный в прошивке, достаточно прост. При включении выставляется уровень громкости в соответствии с положением ручки потенциометра. Если пользователь покрутил ручку потенциометра – громкость меняется. Если воспользовался регулировкой громкости с пульта ДУ – громкость также соответственно изменяется. Пока ручку не трогают, используется уровень громкости, выставленный с пульта. После процедуры изменения уровня громкости (то есть переключения реле) я поставил задержку для того, чтобы при кручении ручки потенциометра реле беспорядочно не переключались. Величину задержки я выбрал на слух, так чтобы реле не переключались ни слишком часто, ни слишком редко.

Далее была разведена плата под рекомендованные многими, как одни из лучших для этого применения, реле Fujitsu-Takamisawa RY12W-K и SMD-резисторы. Разводка платы далеко не идеальна, и уж тем более не универсальна, но главным условием были минимальные размеры и ради этого чем-то пришлось пожертвовать. Впрочем, я постарался учесть все рекомендации по питанию МК. Крепление платы внутри усилителя сделано при помощи двух штырьков от разъема, одной стороной они запаиваются в плату РГ, второй — в плату усилителя. Соединение входа, выхода и сигнальной земли платы РГ с платой усилителя — при помощи МГТФ сечением 0,35мм², которые идут прямо между плат. Как вариант, можно совместить платы РГ и селектора входов и разместить их непосредственно у (или на) входных разъемах RCA. Платы я заказал на производстве, все-таки, это того стоит.

РГ Никитина

РГ Никитина

Что касается диапазона регулировки громкости, стандартные варианты, когда 6 реле обеспечивали ослабление с шагом в 1дБ в диапазоне от 0 до -63дБ, либо в 2дБ в диапазоне от 0 до -127дБ, показались мне неудачными. Максимальное ослабление в -127дБ чрезмерно, а в -64дБ, по крайней мере для меня, недостаточно, так как я люблю слушать музыку ночью, с уровнем где-то в -80..-70дБ. Проверить это мне помог плеер Foobar2000, в котором можно регулировать громкость, имея перед глазами текущий уровень громкости, выраженный в дБ (громкость на усилителе во время этого теста устанавливается на максимум). После недолгих размышлений было выбрано простое и гениальное решение проблемы: шаг увеличивался в 1,5 раза. Таким образом, ступени характеризуются ослаблением в -1,5 -3 -6 -12 -24 и -48дБ, а максимальное ослабление составило 94,5дБ. Необходимые номиналы резисторов для РГ рассчитывались в Excel, а на практике получались путем запараллеливания пар из 1%-х резисторов типоразмера 1206.

Для выполнения логарифмического закона регулирования, необходимо что бы входные сопротивления регулятора и усилителя мощности были равны. Этого можно добиться пересчетом резистивной матрицы под необходимое входное сопротиление регулятора, либо впаиванием параллельно выходу РГ резистора необходимого номинала (например, при сопротивлениях РГ 10кОм и усилителя 100кОм необходимо впаять резистор 11кОм). Увеличивать сопротивление РГ не стоит, так как через контакты реле в этом случае будет проходить слишком малый ток, что может привносить искажения в сигнал. Хочу отметить, что рекомендуется использовать более качественные резисторы, чем обычные толстопленочные, с более высокими показателями стабильности и большей точностью (тонкопленочные, MELF), но мне не удалось достать нужные номиналы. Резисторы по сопротивлению следует подбирать в пары. Я поленился это сделать и в результате получил при определенном уровне громкости (когда включено только одно реле) ощутимый перекос баланса.

Читайте так же:
Установка операционной системы с компьютера на компьютер

Ниже представлена таблица с номиналами резисторов для РГ входным сопротивлением 10кОм. Для пересчета под другое сопротивление можно воспользоваться прилагаемым Excel-калькулятором.

Регулировка звука на операционном усилители

В этой статье вниманию читателей предлагается ряд различных по схемотехнике и функциональным возможностям регуляторов тембра, которые могут быть использованы радиолюбителями при разработке и модернизации звуковоспроизводящей аппаратуры.

Основной недостаток еще недавно популярных активных регуляторов тембра состоит в использовании глубокой частотно-зависимой ООС и больших дополнительных искажениях, вносимых ими в регулируемый сигнал. Вот почему в высококачественной аппаратуре желательно применять пассивные регуляторы. Правда, и они не лишены недостатков. Самый крупный из них — значительное затухание сигнала, соответствующее диапазону регулирования. Но так как глубина регулирования тембра в современной звуковоспроизводящей аппаратуре невелика (не более 8. 10 дБ), то в большинстве случаев вводить в тракт сигнала дополнительные каскады усиления не требуется.

Другой, не столь существенный недостаток таких регуляторов — необходимость применения переменных резисторов с экспоненциальной зависимостью сопротивления от угла поворота движка (группа «В»), обеспечивающих плавное регулирование. Однако простота конструкции и высокие качественные показатели все же склоняют конструкторов к применению именно пассивных регуляторов тембра.

Следует отметить, что эти регуляторы требуют низкого выходного сопротивления предшествующего им каскада и высокого входного сопротивления последующего.

Разработанный английским инженером Баксандалом еще в 1952 г. регулятор тембра [1] стал, пожалуй, самым распространенным частотным корректором в электроакустике. Классический его вариант состоит из образующих мост двух звеньев фильтра первого порядка — низкочастотного R1C1R3C2R2 и высокочастотного C3R5C4R6R7 (рис. 1,а). Аппроксимированные логарифмические ампли-тудно-частотные характеристики (ЛАЧХ) такого регулятора показаны на рис. 1 ,б. Там же приведены расчетные зависимости для определения постоянных времени точек перегиба ЛАЧХ.

Теоретически максимально достижимая крутизна АЧХ для звеньев первого порядка составляет 6 дБ на октаву, но при практически реализуемых характеристиках из-за незначительного различия частот перегиба (не более декады) и влияния предшествующих и последующих каскадов она не превышает 4. 5 дБ на октаву. При регулировании тембра фильтр Баксандала меняет только наклон АЧХ без изменения частот перегиба. Вносимое регулятором на средних частотах затухание определяется соотношением n=R1/R3. Диапазон регулирования АЧХ при этом зависит не только от величины затухания п, но и от выбора частот перегиба частотной характеристики, поэтому для его увеличения частоты перегиба устанавливают в области средних частот, что, в свою очередь, чревато взаимным влиянием регулировок.

В традиционном варианте рассматриваемого регулятора R1/R3=C2/C1= =C4/C3=R5/R6=n, R2=R7=n-R1. При этом достигается приблизительное совпадение частот перегиба АЧХ в области ее подъема и спада (в общем случае они различны), что обеспечивает относительно симметричное регулирование АЧХ (спад даже в этом случае неизбежно получается более крутым и протяженным). При обычно используемом п=10 (для этого случая указаны минимальные значения номиналов элементов на рис. 1,а-3,а) и выборе частот раздела вблизи 1 кГц регулирование тембра на частотах 100 Гц и 10 кГц относительно частоты 1 кГц составляет ±14. 18дБ. Как отмечалось выше, для достижения плавного регулирования переменные резисторы R2, R7 должны иметь экспоненциальную характеристику регулирования (группа «В») и, кроме того, для получения линейной АЧХ в среднем положении движков регуляторов соотношение сопротивлений верхнего и нижнего (по схеме) участков переменных резисторов также должно быть равно п. При «хайэндовском» п=2. 3, что соответствует диапазону регулирования ±4. 8 дБ, вполне допустимо использовать переменные резисторы с линейной зависимостью сопротивления от угла поворота движка (группа «А»), но при этом несколько огрубляется регулировка в области спада АЧХ и растягивается в области подъема, а плоская АЧХ получается отнюдь не в среднем положении движков регуляторов. С другой стороны, сопротивление секций сдвоенных переменных резисторов с линейной зависимостью лучше согласовано, что уменьшает рассогласование АЧХ каналов стереофонического усилителя, так что неравномерное регулирование в этом случае можно считать допустимым.

Читайте так же:
Установка системы на новый macbook

Наличие резистора R4 не принципиально, его назначение — снизить взаимное влияние звеньев и сблизить частоты перегиба АЧХ в области высших звуковых частот. Как правило, R4= =(0,3. 1,2)’R1. Как показано ниже, от него в ряде случаев можно вообще отказаться. Для снижения влияния на регулятор предшествующих и последующих каскадов их выходное Rвых и входное Rвх сопротивления должны быть соответственно Rвых<<R3, Rвх>>R2.

Приведенный «базовый» вариант регулятора громкости применяется обычно в радиоаппаратуре высокого класса. В бытовой аппаратуре используют несколько упрощенный вариант (рис. 2,а). Аппроксимированные логарифмические амплитудно-частотные характеристики (ЛАЧХ) такого регулятора приведены на рис. 2,6. Упрощение его высокочастотного звена привело к некоторой расплывчатости регулирования в области высших частот и к более заметному влиянию предшествующего и последующего каскадов на АЧХ в этой области.

Подобный корректор при п=2 (с переменными резисторами группы «А») был особенно популярен в простых любительских усилителях [2] конца 60-х — начала 70-х годов (главным образом, из-за малого затухания), но вскоре величина п возросла до привычных сегодня значении. Все сказанное выше относительно диапазона регулирования, согласования и выбора регуляторов справедливо и для упрощенного варианта корректора.

Если отказаться от требования симметричного регулирования АЧХ на участках их подъема и спада (кстати, необходимость спада практически не возникает), то можно еще более упростить схему (рис. 3,а). Приведенные на рис. З.б ЛАЧХ регулятора соответствуют крайним положениям движков резисторов R2, R4. Достоинство такого регулятора — простота, но поскольку все его характеристики взаимосвязаны, для удобства регулирования целесообразно выбирать п=3. 10. С ростом п крутизна подъема растет, а спада — снижается. Все сказанное выше о традиционных вариантах корректора Баксандала в полной мере относится и к этому, предельно упрощенному варианту.

Однако схема регулятора тембра Баксандала и ее варианты — отнюдь не единственная возможная реализация пассивного двухполосного регулятора тембра. Вторая группа регуляторов выполнена не на базе мостов, а на базе частотно-зависимого делителя напряжения. В качестве примера изящного схемотехнического решения регулятора можно привести темброблок, в свое время использовавшийся в различных вариациях в ламповых усилителях электрогитар. «Изюминкой» данного регулятора является изменение частот перегиба АЧХ в процессе регулирования тембра, что приводит к интересным эффектам в звучании «классической» электрогитары. Базовая его схема изображена на рис. 4,а, а аппроксимированные ЛАЧХ — на рис. 4,6. Там же приведены расчетные зависимости для определения постоянных времени точек перегиба.

Нетрудно заметить, что регулировка в области низших звуковых частот изменяет частоты перегиба, не меняя наклон АЧХ. Когда движок переменного резистора R4 находится в нижнем (по схеме) положении, АЧХ на низших частотах линейна. При перемещении же движка вверх на ней появляется подъем, причем точка перегиба в процессе регулирования сдвигается в область более низких частот. При дальнейшем перемещении движка верхняя (по схеме) секция резистора R4 начинает шунтировать резистор R2, что вызывает сдвиг высокочастотной точки перегиба в область более высоких частот. Таким образом, при регулировании подъем низких частот дополняется спадом средних. Регулятор высших звуковых частот представляет собой простейший фильтр первого порядка и особенностей не имеет.

На базе этой схемы можно построить несколько вариантов темброблоков, позволяющих регулировать АЧХ в области низших и высших частот. Причем в области низших частот возможен и подъем, и спад АЧХ, а на высших — только подъем.

Вариант темброблока с регулированием частоты перегиба АЧХ в низкочастотной области показан на рис. 5,а, его ЛАЧХ — на рис. 5,6. Резистор R2 регулирует частоту перегиба АЧХ, a R5 — ее наклон. Совместное действие регуляторов позволяет получить значительные пределы и большую гибкость регулирования.

Схема упрощенного варианта темброблока приведена на рис. 6,а, его ЛАЧХ — на рис. 6,6. Он представляет собой, в сущности, гибрид низкочастотного звена темброблока, показанного на рис. 3,а, и высокочастотного звена темброблока, показанного на рис.4,а.

Объединив функции регулирования АЧХ в низкочастотной и высокочастотной областях, можно получить простой комбинированный регулятор тембра с одним органом управления, весьма удобный для применения в радиоприемной и автомобильной аппаратуре. Его принципиальная схема показана на рис. 7,а и ЛАЧХ — на рис. 7,6. В нижнем (по схеме) положении движка переменного резистора R1 АЧХ близка к линейной во всем диапазоне частот. При перемещении .его вверх появляется подъем на низших частотах, причем низкочастотная точка перегиба в процессе регулирования сдвигается в область более низших частот. При дальнейшем перемещении движка верхняя (по схеме) секция резистора R1 включает в работу конденсатор С1, что приводит к подъему высших частот.

Читайте так же:
Нет установки системы с флешки

При замене переменного резистора R1 переключателем (рис. 8,а и 8,6) рассмотренный регулятор превращается в простейший тон-регистр (положение 1 — classic; 2 — jazz; 3 — rock), популярный в 50-х — 60-х годах и вновь используемый в эквалайзерах магнитол и музыкальных центров в 90-х.

Несмотря на то что о регулировании тембра, казалось бы, все давно уже сказано, многообразие пассивных корректирующих цепей не исчерпывается предложенными вариантами. Немало забытых схемотехнических решений переживают сейчас второе рождение на новом качественном уровне. Весьма перспективен, например, регулятор громкости с раздельной регулировкой тонкомпенсации по низким и высоким частотам [З].

1. Шкритек П. Справочное руководство по звуковой схемотехнике (пер. с нем.). — М.: Мир, 1991, с. 151-153.

2. Крылов Г. Широкополосный УНЧ. — Радио, 1973, N 9, c.56,57.

3. Шихатов А. Комбинированный блок регулирования АЧХ. — Радио, 1993, N 7, с. 16.

А. ШИХАТОВ, г. Москва

Не плохой обзорчик, однако упущен еще один вариант регулятора, принципиальная схема приведена ниже. Единственным недостатком этого регулятора громкости-тембра является необходимость выходного каскада предварительных усилителей способного работать на нагрузку 10к, поскольку при минимальном уровне громкости движок переменного резистора будет соединем с общим проводом.

Пассивный регулятор громкости и тембра звука

От регулятора тембра мне нужен только подъем крайних частот диапазона для увеличения отдачи дешевых динамиков. Но на Али регуляторов такого типа, увы, не нашлось. Посему недорого приобрел традиционный регулятор НЧ-ВЧ с регулировками как в плюс, так и в минус.

Устройство собрано на компактной плате, комплектуется ручками для регуляторов. Но провода с разъемами в комплект поставки не входят!

Внешне все приемлемо — детали с 5% допуском, конденсаторы полипропиленовые, переменные резисторы B50k.

Схема устройства

Регулятор громкости включен делителем напряжения на входе. Следующий за регулятором громкости регулятор тембра собран по упрощенной схеме Баксандала.

С принципом работы такого регулятора и алгоритмом расчета его элементов можно ознакомиться, например, в статье А.Шихатова в №1 журнала «Радио» за 1999г. http://archive.radio.ru/web/1999/01/013/
Заметил, что номиналы деталей китайского устройства весьма близки к номиналам деталей регулятора на рис.2 в упомянутой статье 😉
Дополнительные ограничивающие резисторы на входе и выходе можно заменить перемычками или разделительными конденсаторами (ФВЧ).

Особенности подключения: пассивный регулятор тембра желательно подключать к источнику с низким выходным сопротивлением, а следующий за регулятором тембра усилитель должен иметь высокое входное сопротивление.
Приобретенное устройство предполагается подключать к выходу на наушники смартфона или плеера. Выходное сопротивление таких усилителей близко к нулю. С учетом разного рода отклонений, принял Zsrc равным 1 кОм.
В качестве усилителя предполагаю использование платки на основе микросхемы TPA3110D2. В даташите на нее ищу фразу «Input impedance» и получаю значение 60 кОм.
АЧХ темброблока при различных положениях регуляторов можно смоделировать в программе ToneStack Calculator http://www.duncanamps.com/tsc/
При средних положениях регуляторов НЧ-ВЧ АЧХ следующая:

Видно, что коэффициент передачи регулятора при этом составляет примерно -20 Дб. Для восстановления уровня громкости до исходного значения требуется дополнительно усилить сигнал в 10 раз по напряжению после регулятора. Или на вход регулятора подать усиленный сигнал, что при малом напряжении питания усилителя может привести к ограничению сигнала.
Этот момент меня не особо тревожит, поскольку я надеюсь, что упомянутая микросхема TPA3110D2 (на 15 Ватт выходной мощности) обеспечит необходимую громкость на имеющихся у меня 2 ваттных динамиках.
Привожу АЧХ при крайних положениях регуляторов.

Как видно, АЧХ далека от идеала. Исправить ее можно уменьшив номинал резистора R3 до 510 Ом.

Привожу АЧХ при крайних положениях регуляторов с измененным номиналом резистора.

Другое дело!

В целом впечатления от этого регулятора положительные, можно рекомендовать к покупке с учетом описанных особенностей

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector